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We discuss some consequences of the canonical transformation in the Hamiltonian
theory of water waves (Zakharov, J. Appl. Mech. Tech. Phys., vol. 9, 1968, pp. 190–
194). Using Krasitskii’s canonical transformation we derive general expressions for
the second-order wavenumber and frequency spectrum and the skewness and the
kurtosis of the sea surface. For deep-water waves, the second-order wavenumber
spectrum and the skewness play an important role in understanding the so-called
sea-state bias as seen by a radar altimeter. According to the present approach but
in contrast with results obtained by Barrick & Weber (J. Phys. Oceanogr., vol. 7,
1977, pp. 11–21), in deep water second-order effects on the wavenumber spectrum
are relatively small. However, in shallow water in which waves are more nonlinear,
the second-order effects are relatively large and help to explain the formation of the
observed second harmonics and infra-gravity waves in the coastal zone. The second-
order effects on the directional-frequency spectrum are as a rule more important; in
particular it is shown how the Stokes-frequency correction affects the shape of the
frequency spectrum, and it is also discussed why in the context of the second-order
theory the mean-square slope cannot be estimated from time series. The kurtosis of
the wave field is a relevant parameter in the detection of extreme sea states. Here,
it is argued that in contrast perhaps to one’s intuition, the kurtosis decreases while
the waves approach the coast. This is related to the generation of the wave-induced
current and the associated change in mean sea level.

1. Introduction
Surface gravity waves are usually described in the context of the potential flow of

an ideal fluid. As discovered by Zakharov (1968), the resulting nonlinear evolution
equations can be obtained from a Hamiltonian, which is the total energy of the fluid,
while the appropriate canonical variables are the surface elevation η(x, t) and the
value ψ of the potential φ at the surface, ψ(x, t) =φ(x, z = η, t)).

For small wave steepness the potential inside the fluid may be expressed in
an approximate manner in terms of the canonical variables, and as a result the
Hamiltonian becomes a series expansion in terms of the action variable A(k, t)
(which is related to the Fourier transform of the canonical variables). The second-
order term corresponds then to linear theory, while the third- and fourth-order terms
represent effects of three- and four-wave interactions. Excluding effects of capillarity,
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it is well known that the dispersion relation for surface gravity waves does not allow
resonant three-wave interactions, and as a consequence there exists a non-singular
canonical transformation of the type

A = A(a, a∗)

that allows the elimination of the third-order terms from the Hamiltonian. In terms of
the new action variable a(k, t) the Hamiltonian now only has quadratic and quartic
terms, and the Hamilton equation attains a relatively simple form and is known as
the Zakharov equation.

The properties of the Zakharov equation have been studied in great detail by, for
example, Crawford et al. (1981), Yuen & Lake (1982) and Krasitskii & Kalmykov
(1993). Thus the nonlinear dispersion relation, first obtained by Stokes (1947), follows
from the Zakharov equation and also the instability of a weakly nonlinear, uniform
wavetrain (the so-called Benjamin–Feir instability); the results on growth rates, for
example, are in good agreement with the results by Longuet-Higgins (1978), who did
a numerical study of the instabilities of deep-water waves in the context of the exact
equations. It is noted that once the solution to the Zakharov equation is known for
a, one still needs to apply the canonical transformation to recover the actual action
variable A and hence the surface elevation. Although the difference between the two
action variables is only of the order of the wave steepness, explaining why relatively
less attention has been devoted to the consequences of the canonical transformation,
there are a number of applications where one is interested in the effects of bound
waves. Examples are the high-frequency radar (e.g. Wyatt 2000), which basically
measures aspects of the second-order spectrum, and the estimation of the sea-state
bias as seen by an altimeter (Elfouhaily et al. (1999).

In this paper I would like to study some properties and consequences of the
canonical transformation in the context of the statistical theory of weakly nonlinear
ocean waves. For small wave steepness one finds from the Zakharov equation that
at the lowest order the action variable a(k, t) follows a linear evolution equation;
hence the action variable obeys Gaussian statistics. The (nearly) Gaussian property
of the ocean surface follows from the central limit theorem which tells us that if
the waves have random and independent phase, then the probability distribution is
Gaussian. The waves are to a good approximation independent because they have
propagated into a given area of the ocean from different distant regions. Even if
initially one would start with a highly correlated state, then, because of dispersion,
wave groups separate, thereby decreasing the correlation. On the other hand, finite-
steepness waves may give rise to correlations between the different wave components
because of (resonant) wave–wave interactions. However, the effect is small for small
steepness. Therefore, in practice one nearly always finds that for dispersive ocean
waves the Gaussian property holds in good approximation. For a more detailed
discussion see Hasselmann (1967).

Then, given the Gaussian property of the sea surface, effects of nonlinearity
on the moments of the surface elevation may be evaluated using the canonical
transformation. As a first example, I consider the second moment 〈η2〉 and the
associated wavenumber-variance spectrum F (k) and directional-frequency spectrum
F (Ω, θ). The second-order corrections to the wave spectrum (called the second-
order spectrum for short) are obtained by deriving a general expression for the
wavenumber–frequency spectrum. The wavenumber spectrum and the frequency
spectrum then follow from the marginal-distribution laws. Some of the properties
of these second-order spectra are discussed in some detail, both for deep water and
for shallow water.
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Regarding the wavenumber spectrum it is shown that the second-order spectrum
is small compared to the first-order spectrum. This contrasts with Barrick & Weber
(1977) whose work indicates that for large wavenumbers the perturbation expansion
diverges. However, following Creamer et al. (1989) it is argued here that Barrick &
Weber (1977) overlooked an important, quasi-linear term which removes the divergent
behaviour of the second-order spectrum. Creamer et al. (1989) considered improved
representations of ocean surface waves using a Lie transformation and applied their
work to the determination of the second-order spectrum in one dimension. Our
results on the second-order spectrum, although obtained via the different route of
Krasitskii’s canonical transformation, are in complete agreement with Creamer et al.
(1989), but our explicit result is slightly more general, as it holds for two-dimensional
propagation and also in waters of finite depth. It is worthwhile to mention that
Zakharov (1992) and Krasitskii (1994) considered the slightly simpler problem of
the higher-order corrections to the action-density spectrum. They found that the
second-order action-density spectrum contains two groups of terms, namely terms
which are fully nonlinear and terms which are termed quasi-linear because they are
proportional to the first-order action spectrum. The quasi-linear terms are an example
of self-interaction and give a nonlinear correction to the action or energy of the free
waves, whereas the fully nonlinear terms describes the amount of energy of the bound
waves which do not satisfy the linear dispersion relation.

While the second-order wavenumber spectrum consists of two contributions, namely
one contribution giving the effects of bound waves and one the quasi-linear term,
the second-order frequency spectrum has an additional term which, not surprisingly,
is related to the Stokes-frequency correction. In deep water the Stokes-frequency
correction is positive and therefore gives an upshift of the peak of the frequency
spectrum. However, this upshift is small compared to the downshift of the spectrum
caused by the resonant four-wave interactions. But the second-order corrections do
have an impact on the high-frequency tail of the spectrum. Taking as the first-order
spectrum a Phillips spectrum which has an Ω−5 tail, it is found that from twice
the peak frequency onward the sum of the first- and second-order spectra (hereafter
called the total spectrum) has approximately an Ω−4 shape. Hence, the second-
order corrections to the frequency spectrum are important, and they mainly stem
from the combined effects of the generation of bound waves and the quasi-linear
self-interaction.

In shallow water, gravity waves are typically more nonlinear, as the ratio of
the amplitude of the second harmonic to the first harmonic rapidly increases with
decreasing dimensionless depth. Therefore, compared to the first-order spectrum the
second-order spectrum may give rise to considerable contributions, in particular in the
frequency domain around twice the peak frequency and in the low-frequency range in
which forced infra-gravity waves are generated. In addition, for a dimensionless depth
O(1), the Stokes-frequency correction is found to give a downshift of the peak of
the frequency spectrum. This downshift is considerable, also compared to the shift in
the spectral peak caused by the resonant four-wave interactions (Janssen & Onorato,
2007).

As a second example I consider the determination of the skewness and the kurtosis
of the sea surface. The skewness parameter is important when one is interested in
the determination of the sea-state bias as experienced by a radar altimeter onboard
a satellite (see e.g. Srokosz 1986), while the kurtosis is an important parameter to
assess whether there is an increased probability of an extreme sea state, e.g. the likely
occurrence of freak waves (Janssen 2003). In particular, the dependence of these
statistical parameters on the spectral shape and the dimensionless depth is studied.
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Regarding the depth dependence, the important role of the wave-induced mean sea
level is pointed out. In the presence of wave groups finite-amplitude ocean waves give
rise to a set-down, and as a consequence the skewness and kurtosis parameters are
reduced to a considerable extent. This has important consequences for the occurrence
of extreme events in shallow water.

The programme of this paper is as follows. After giving some background on the
reason why this study was started, § 2 gives a brief overview of the Hamiltonian
theory of surface gravity waves, while in § A 1 a detailed derivation of the canonical
transformation is presented. In § 3 the general expression of the wavenumber–
frequency spectrum is obtained in terms of the coefficients of the canonical
transformation. The wavenumber and the directional-frequency spectrum then follow
immediately from the marginal distribution laws. Section 3 shows that the total-
wavenumber spectrum agrees with the deep-water result of Creamer et al. (1989),
highlighting the important role of the quasi-linear term. Also, some interesting
properties of the second-order frequency spectrum for both deep water and water of
finite depth are discussed. In particular, the deep-water frequency spectra have a fatter
tail due to the bound waves, which gives rise to a considerable overestimatation of
the mean-square slope. Furthermore, in shallow water the Stokes-frequency correction
results in a sizeable downshift of the peak of the spectrum. In § 4 the skewness and
the kurtosis are determined for general spectra, and the dependence of the statistical
parameters on the depth and the spectral shape is briefly studied. Conclusions are
presented in § 5.

As the development presented here is fairly elaborate, § A 3 gives all the relevant
results starting from the canonical transformation of a single wavetrain, and these
single-mode results have been used as a check on the general results of the main text.
A preliminary account of this work may be found in Janssen (2004).

1.1. Background

This investigation started when it was realized that according to the work of Barrick
& Weber (1977) the weakly nonlinear perturbation expansion for surface gravity
waves is not convergent. For small wave steepness the nonlinear evolution equations
have been solved by means of a perturbation expansion by several authors (Tick
1959; Longuet-Higgins 1963; Barrick & Weber 1977), which allows to write down an
expression for the second-order correction to the wavenumber–frequency spectrum
F (k, ω). By integrating F (k, ω) over angular frequency, the following elegant result
for the total-wavenumber spectrum F (k) is found:

F (k) = E(k) +
1

2
k2

∫ ∞

k/2

dk′ E(k′)E(|k − k′|), (1)

where E(k) is the first-order spectrum.
It is instructive to determine F (k) for a simple input spectrum E(k). For the Phillips

spectrum

E(k) =
1

2
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Figure 1. The second-order effects on the surface-wave-height spectrum, illustrating the
importance of the quasi-linear term.

for k > 2k0, while for k < 2k0 one has

F (k) = E(k) +
1

8
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. (4)

A plot of this special case is given in figure 1, and the present result is labelled
B&W. It is striking that for large k the second-order spectrum dominates the first-
order spectrum. This is undesirable because it signals that the perturbation approach
may not be convergent. As a consequence, parameters such as the wave variance m0

and the mean-square slope mss defined by

m0 =

∫
dk F, mss =

∫
dk k2F (5)

are to a large extent determined by the second-order spectrum.
It is straightforward to obtain the behaviour of F (k) for large k by taking the

appropriate limit of (3),

lim
k→∞

F (k) =
1

8

α2
p

kk2
0

, (6)

which shows that F (k) behaves like 1/k; hence parameters such as the wave variance
and the mean-square slope really diverge.

The divergence of the expansion in small wave slope has been made plausible in the
past by several researchers. The expansion is a small-amplitude development around
zero-mean surface. While this may be appropriate for the large-scale waves, small-
scale waves are riding on the long waves. Hence for these small waves the domain is
not bounded by a zero-mean surface but has a large-scale variation determined by the
long waves. This will affect the solution of the potential equation for the short waves
and hence will affect the spectrum of the short waves. Others would argue that the
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divergence of the expansion for high wavenumbers suggests that these short waves
become very nonlinear and hence very steep, resulting in micro-scale wave breaking,
which would limit energy levels at the high wavenumbers.

However, it turns out that the result of Barrick & Weber (1977) is most likely
flawed. This was pointed out for the first time by Creamer et al. (1989) who
considered improved representations of ocean surface waves using Lie and canonical
transformations and applied their work to the determination of the second-order
spectrum. Surprisingly, they found the following instead of (1):

F (k) = E(k) +
1

2
k2

∫ ∞

k/2

dk′ E(k′)E(|k − k′|) − k2E(k)

∫ ∞

0

dk′ E(k′). (7)

The additional, quasi-linear term was explained by noting that Barrick & Weber
(1977) did not include contributions from the product of the first- and third-order
surface elevation η, since their second-order spectrum was entirely determined by
the second-order surface elevation. It is immediately evident that the additional term
cancels the singular behaviour of the first term, as for a Phillips spectrum the extra
term equals −(1/8)α2

p/kk2
0 . It is therefore important to include the extra quasi-linear

term. In fact, for large wavenumbers one finds from (7) for the Phillips spectrum

F (k) = E(k) +
α2

p

8k3

[
6 log

(
k2

k2
0

− 1

)
− 7

]
; (8)

hence, the second-order spectrum behaves in a similar fashion as the first-order
Phillips spectrum. This is also shown in figure 1 in which the quasi-linear term shown
in (7) gives a large and important correction to the high-wavenumber tail of the
second-order spectrum.

The result of Creamer et al. (1989) has important consequences for the theory of
ocean waves. I therefore thought it worthwhile to check this result by following a
somewhat different path, namely choosing as starting point Zakharov’s treatment
of surface waves. A key role in this approach is the canonical transformation which
separates resonant from non-resonant contributions to the evolution of surface waves.
The canonical transformation represents the effects of bound waves, and once this
transformation is known it is relatively straightforward to obtain an expression for the
second-order spectrum. This will be done for the case of two-dimensional propagation
for arbitrary spectra. Applying the result for unidirectional waves in deep water the
result of Creamer et al. (1989) will be recovered. At the same time, it turns out that
the approach is so general that it could also be applied for shallow-water waves.

2. Hamiltonian formulation
Modern ocean-wave theories start from the Hamiltonian formulation of the

nonlinear evolution equations of the potential flow of an ideal fluid. Zakharov (1968)
discovered that the Hamiltonian is given by the total energy of the fluid, while the
appropriate canonical variables are the surface elevation η(x, t) and the value ψ of
the potential φ at the surface, ψ(x, t) =φ(x, z = η, t)).

Here, the total energy is given by

H =
1

2

∫ ∫ η

−D

dz dx

(
(∇φ)2 +

(
∂φ

∂z

)2
)

+
g

2

∫
dx η2.
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The boundary conditions at the surface, namely the kinematic boundary condition
and Bernoulli’s equation, are then equivalent to Hamilton’s equations,

∂η

∂t
=

δH
δψ

,
∂ψ

∂t
= −δH

δη
, (9)

where δH/δψ is the functional derivative of H with respect to ψ , etc. Inside the

fluid the potential φ satisfies Laplace’s equation,

∇2φ +
∂2φ

∂z2
= 0, (10)

with boundary conditions

φ(x, z = η) = ψ (11)

and
∂φ(x, z)

∂z
= 0, z = −D, (12)

with D the water depth. If one is able to solve the potential problem, then φ may
be expressed in term of the canonical variables η and ψ . Then the energy H may
be evaluated in terms of the canonical variables, and the evolution in time of η

and ψ follows at once from Hamilton’s equations given in (9). This was done by
Zakharov (1968), who obtained the deterministic evolution equations for deep-water
waves by solving the potential problem ((10)–(12)) in an iterative fashion for small
steepness ε. In addition, the Fourier transforms of η and ψ were introduced, for
example

η =

∫ ∞

−∞
dk η̂(k)eik·x, (13)

where η̂ and similarly ψ̂ are the Fourier transforms of η and ψ . Here, k is the
wavenumber vector and k its absolute value.

In order to proceed, introduce

T0 = tanh kD

and the linear dispersion relation for surface gravity waves

ω2 = gkT0. (14)

In waters of arbitrary depth we have the following relation between the Fourier
transform of η and ψ and the action variable A(k, t):

η̂ =

√
ω

2g
(A(k) + A∗(−k)), ψ̂ = −i

√
g

2ω
(A(k) − A∗(−k)). (15)

In terms of the action variable the energy of the fluid becomes to fourth order in
amplitude,

H =

∫
dk1ω1A1A

∗
1 +

∫
dk1,2,3δ1−2−3V

(−)
1,2,3[A

∗
1A2A3 + c.c.]

+
1

3

∫
dk1,2,3δ1+2+3V

(+)
1,2,3[A1A2A3 + c.c.]

+

∫
dk1,2,3,4δ1−2−3−4W

(1)
1,2,3,4[A

∗
1A2A3A4 + c.c.]
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+
1

2

∫
dk1,2,3,4δ1+2−3−4W

(2)
1,2,3,4A

∗
1A

∗
2A3A4

+
1

4

∫
dk1,2,3,4δ1+2+3+4W

(4)
1,2,3,4[A

∗
1A

∗
2A

∗
3A

∗
4 + c.c.], (16)

where V () and W () are complicated expressions of ω and k that were given by Krasitskii
(1994). For convenience all relevant interaction coefficients are also recorded in the
Appendix. Here, I have followed a minimalist approach to notation: A1 = A(k1, t),
ω1 = ω(k1), dk1,2,3 = dk1 dk2 dk3, δ1−2−3 = δ(k1 − k2 − k3), V

(−)
1,2,3 = V (−)(k1, k2, k3), etc.

Only when there is a possibility for confusion we shall use a more explicit notation.
For example, when introducing two-time-level statistics I will write 〈a1(t1)a

∗
2(t1)〉, where

the index ‘2’ refers to the amplitude at wavenumber k2 while the argument refers to
time t1. Finally, as long as there is no confusion we shall use the same symbol for
the various forms of the wave spectrum; namely we use F for the complete spectrum
(which includes the second-order corrections). The distinction should be clear from
their arguments; F (k), F (ω, θ) and F (ω) denote wavenumber, directional-frequency
and the angular-frequency spectra, respectively. The symbol E will be used for the
first-order spectrum.

The evolution equation for A now follows from Hamilton’s equation ∂A/∂t =
−iδH/δA∗, and evaluation of the functional derivative of the full expression for H
with respect to A∗ gives

∂

∂t
A1 + iω1A1 = −i

∫
dk2,3

{
V

(−)
1,2,3A2A3δ1−2−3 + 2V

(−)
3,2,1A

∗
2A3δ1+2−3

+ V
(+)
1,2,3A

∗
2A

∗
3δ1+2+3

}
− i

∫
dk2,3,4

{
W

(1)
1,2,3,4A2A3A4δ1−2−3−4

+ W
(2)
1,2,3,4A

∗
2A3A4δ1+2−3−4 + 3W

(1)
4,3,2,1A

∗
2A

∗
3A4δ1+2+3−4

+ W
(4)
1,2,3,4A

∗
2A

∗
3A

∗
4δ1+2+3+4

}
. (17)

Equation (17) is the basic evolution equation of weakly nonlinear gravity waves, and
it includes the relevant amplitude effects up to third order.

A great simplification of the expression for the energy is achieved by introducing
a canonical transformation A= A(a, a∗) that eliminates the contribution of the non-
resonant second- and third-order terms as much as possible. The first few terms are
given by

A1 = a1 +

∫
dk2,3

{
A

(1)
1,2,3a2a3δ1−2−3 + A

(2)
1,2,3a

∗
2a3δ1+2−3

+ A
(3)
1,2,3a

∗
2a

∗
3δ1+2+3

}
+

∫
dk2,3,4

{
B

(1)
1,2,3,4a2a3a4δ1−2−3−4

+ B
(2)
1,2,3,4a

∗
2a3a4δ1+2−3−4 + B

(3)
1,2,3,4a

∗
2a

∗
3a4δ1+2+3−4

+ B
(4)
1,2,3,4a

∗
2a

∗
3a

∗
4δ1+2+3+4

}
. . . . (18)

The unknowns A() and B () are obtained by systematically removing the non-resonant
third- and fourth-order contributions to the wave energy and insisting that the form
of the energy remains symmetric. These expressions are quite involved and have been
given by Krasitskii (1990, 1994) for example. The derivation of these coefficients is
given in the Appendix, and here, we only give the transfer coefficient for the quadratic
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terms explicitly. They read

A
(1)
1,2,3 = −

V
(−)
1,2,3

ω1 − ω2 − ω3

, A
(2)
1,2,3 = −2

V
(−)
3,2,1

ω1 + ω2 − ω3

, A
(3)
1,2,3 = −

V
(+)
1,2,3

ω1 + ω2 + ω3

,

and they show that in the absence of resonant three-wave interactions the
transformation A= A(a, a∗) is indeed non-singular.

Elimination of the variable A in favour of the new action variable a results in a
great simplification of the wave energy H (see (16)). It becomes

H =

∫
dk1ω1a

∗
1a1 +

1

2

∫
dk1,2,3,4T1,2,3,4a

∗
1a

∗
2a3a4δ1+2−3−4,

where the interaction coefficient T1,2,3,4 is given by Krasitskii (1990, 1994) and in
§ A 1. The interaction coefficient enjoys a number of symmetry conditions, of which
the most important one is T1,2,3,4 = T3,4,1,2 because this condition implies that H
is conserved. In terms of the new action variable a, Hamilton’s equation becomes
∂a/∂t = −iδH/δa∗ or

∂a1

∂t
+ iω1a1 = −i

∫
dk2,3,4T1,2,3,4a

∗
2a3a4δ1+2−3−4, (19)

which is known as the Zakharov equation. Clearly, by removing the non-resonant
terms, a considerable simplification of the form of the evolution equation describing
four-wave processes has been achieved. As a consequence of the canonical
transformation the interaction coefficient T now represents two types of four-wave
processes. The first type is called the direct interaction and involves the interaction
of four free waves (which obey the linear dispersion relation); in the interaction
coefficient this process has the weight W

(2)
1,2,3,4. The second type is called a virtual-state

interaction because two free waves generate a virtual state consisting of bound waves,
which then decays into a different set of free waves. In the interaction coefficient this
process is represented by products of the second-order interaction coefficients V

±
1,2,3.

For narrowband waves in deep water these two processes can be shown to have equal
weight.

The Zakharov equation has been used in the past as a starting point for the stability
analysis of ocean waves. In addition, it is the appropriate starting point to obtain
the Hasselmann equation (see e.g. Janssen 2004) which describes the evolution of the
action-density spectrum of an ensemble of surface gravity waves owing to (quasi-
)resonant four-wave interactions. The Hasselmann equation forms the cornerstone of
present-day wave-forecasting systems. However, strictly speaking one still needs to
apply the canonical transformation (18) in order to obtain the surface elevation and
the associated wave-variance spectrum. This is the main subject of the present paper.
Therefore, the evolution of the free-wave action variable follows from the Zakharov
equation, and by applying the canonical transformation (18) the nonlinear corrections
to the surface elevation and the wave-variance spectrum may be obtained at every
instant. In other words a diagnostic relation will be obtained, which immediately
will give the changes in the surface-elevation spectrum due to second harmonics,
infra-gravity waves and, in case of the frequency spectrum, the Stokes-frequency
correction. Noting that the integral over the surface-elevation spectrum measures the
potential energy of the system, it can be shown analytically that for deep-water waves
the spectrum is changed in such a way that the total wave variance (hence potential
energy) is conserved. By excluding the contributions to the wave spectrum at zero
wavenumber we can numerically show that also in shallow water the total wave
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variance is conserved by the diagnostic relation. It is expected that the conservation
of wave variance by the canonical transformation is related to the property of this
transformation to ensure that the Zakharov equation is Hamiltonian. However, such
a direct connection has not been established yet but deserves further work.

3. Second-order spectrum
The main purpose of this section is to derive a general expression for the

wavenumber–angular-frequency spectrum in terms of the interaction coefficients
A(i)(i = 1, 3) and B (i)(i = 1, 4) that appear in the canonical transformation and the
nonlinear interaction coefficient T . Then, from the so-called marginal distribution
laws the wavenumber and frequency spectrum are obtained. The main result is
that for given free-wave spectrum, which follows from the solution of the energy-
balance equation, the canonical transformation provides us with a mapping that
immediately gives the appropriate nonlinear low-frequency/wavenumber part of the
spectrum and the contributions by second harmonics. This is illustrated by some
examples from surface gravity waves in deep water and in water of intermediate
depth (kD 
 1). Compared to the result of Barrick & Weber (1977) two new features
are discovered. In agreement with Creamer et al. (1989) a quasi-linear term is found,
which removes the high-wavenumber catastrophe. In addition, for frequency spectra it
is found that the Stokes nonlinear frequency correction contributes to the second-order
spectrum.

3.1. Wavenumber–frequency spectrum

The purpose of this section is to derive a general expression for wavenumber–
frequency spectrum correct to second order. In order to do so we begin by considering
the two-point correlation function

ρ(ξ , τ ) = 〈η(x + ξ , t + τ )η(x, τ )〉,

where the angle brackets denote an ensemble average. The wavenumber–frequency
spectrum F (k, Ω) then follows immediately by Fourier transformation in space and
time of ρ, i.e.

F (k, Ω) =
1

8π3

∫
dξ dτ ρ(ξ , τ )ei(k·ξ−Ωτ ). (20)

Here, k and angular frequency Ω cover the whole real domain. Note that from the
reality of η and the homogeneity of the wave field it follows that the wavenumber–
frequency spectrum enjoys the properties F (k, Ω) = F ∗(k, Ω) =F (−k, −Ω).

Once the wavenumber–frequency spectrum is known the wavenumber spectrum
F (k) and the frequency spectrum F (Ω) follow from the marginal distribution laws:

F (k) =

∫
dΩ F (k, Ω); F (Ω) =

∫
dk F (k, Ω). (21)

These marginal distribution laws follow in a straightforward fashion from the
definition of the wavenumber–frequency spectrum. For example, the wavenumber
spectrum can be obtained by integrating (20) over angular frequency and realizing
that the resulting integral over Ω is a δ function in τ space, i.e.∫

dΩ F (k, Ω) =
1

8π3

∫
dξ dτ ρ(ξ , τ )

∫
dΩ ei(k·ξ−Ωτ ) =

1

4π2

∫
dξ ρ(ξ , 0) eik·ξ .

= F (k),
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and the last equality follows because the wavenumber spectrum is just the Fourier
transform of the spatial correlation function. In a similar fashion the relation for the
frequency spectrum may be established.

Evaluation of the spatial aspects of the two-point correlation function is fairly
straightforward, since in the expression of the surface elevation in (13) we have
adopted a Fourier representation in space. Unfortunately, the time aspects of ρ(ξ , τ )
are more complicated, as the action variable a(k, t) obeys the Zakharov equation
which is nonlinear. Only when it can be argued that, for example for small wave
steepness, the nonlinear term in the Zakharov equation can be neglected, it is
straightforward to treat the time aspects of the correlation function as well because
the action variable then executes a simple oscillation with the angular frequency of
linear surface gravity waves. The latter approach is justified for small wave steepness
when one is interested in the lowest order expression of the wavenumber–frequency
spectrum (see e.g. Komen et al. 1994). Here, we are interested in the second-order
spectrum, which is of the order of the square of the lowest order spectrum. The
nonlinear term in the Zakharov equation, which gives for example the Stokes-
frequency correction for a single wavetrain, is of the order of the amplitude to
the third power, and it will be shown that this will give rise to a contribution to
the second-order frequency spectrum which is of the same order of magnitude as the
generation of second harmonics and the low-frequency set-down.

The relation between two-point correlation function and Fourier amplitude can be
established in the following manner. Substitute the Fourier expansion of η into spatial
correlation function ρ, and use reality of η (η̂(k) = η̂∗(−k)) to establish

ρ(ξ , τ ) =

〈∫
dk1dk2η̂(k1, t1)η̂

∗(k2, t2)e
i[k1·x−k2·(x+ξ )]

〉
,

where t1 = t and t2 = t + τ . For a homogeneous sea,

〈η̂(k1, t1)η̂
∗(k2, t2)〉 = R(k1, τ )δ(k1 − k2), (22)

the correlation function becomes

ρ(ξ , τ ) =

∫
dk1R(k1, τ )e−ik1·ξ .

This is then substituted in the expression for the wave spectrum, giving

F (k, Ω) =
1

2π

∫
dτ R(k, τ )e−iΩτ , (23)

and further reduction can only be achieved once the time evolution of R(k, τ ) is
known.

Clearly, in order to obtain the wavenumber–frequency spectrum evaluation of the
second moment 〈η̂(k1, t1)η̂

∗(k2, t2)〉 is required. Thus we need the surface elevation in
terms of the action variable A (15), and we need the canonical transformation (18).
Writing

η̂1 = f1

(
A(k1) + A∗(−k1)

)
, f1 =

(
ω1

2g

) 1
2

, (24)

the second moment becomes

〈η̂1(t1)η̂
∗
2(t2)〉 = f1f2〈A1(t1)A

∗
2(t2) + A∗

−1(t1)A−2(t2) + A1(t1)A−2(t2) + A∗
−1(t1)A

∗
2(t2)〉.
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In order to make progress in the evaluation of the second moment, we will make
some additional assumptions on the one-time-level statistics of the ‘free-wave’ action
variable a, which are consistent with the Zakharov equation (19). Two-time-level
statistics are obtained from the dynamical evolution equation for a directly. First, we
assume weakly nonlinear waves; hence A= O(ε), where ε is a small parameter of
the size of the wave steepness. Since we are interested in the second-order spectrum
an answer up to O(ε4) is required. Second, it is assumed that the action variable a

follows the statistics of a homogeneous, stationary field with zero mean value 〈a1〉.
Therefore, we introduce the action-density spectrum N(k) according to

〈a1(t1)a2(t1)
∗〉 = N1δ1−2, (25)

while 〈a1a2〉 vanishes. Because of the cubic nonlinearity in the Zakharov equation the
third moment is small, 〈a1a2a3〉 = O(ε5), while the fourth moment becomes

〈a1(t1)a2(t1)a3(t1)
∗a∗

4(t1)〉 = N1N2 (δ1−3δ2−4 + δ1−4δ2−3) + O(ε6). (26)

The O(ε6) term is an estimate of the fourth-order cumulant. However, as shown in
Janssen (2003), under the exceptional circumstances that freak waves are present,
the fourth-order term becomes significantly larger than the present estimate. Strictly
speaking, the fourth-order cumulant is, through its dependence on the resonance
function, also inversely proportional to the width of the wave spectrum. Hence, wave
spectra should be sufficiently wide, or in other words, the so-called Benjamin–Feir
index should be sufficiently small. This is most of the time a valid assumption. The
exception is, of course, when one is interested in parameters such as excess kurtosis
as this quantity is given by an integral over the sixth cumulant. Therefore, for the
kurtosis calculation performed in § 5 deviations of the probability density function
(p.d.f.) due to the nonlinear dynamics of the Zakharov will be taken into account.
The action variable A is now expressed in terms of the free-wave action variable
using the canonical transformation (18). For convenience we write (18) in the form

A = εa + ε2b(a, a∗) + ε3c(a, a∗), (27)

where we identify b with the quadratic part of (18) and c with the cubic part of
the transformation. Now in shallow water Janssen & Onorato (2007) have shown
that there is a wave-induced mean sea level which is generated by the quadratic part
of the canonical transformation. In other words, while 〈a〉 and 〈c〉 vanish this is
not the case for 〈b〉. However, normally, in agreement with experimental practice, the
variance is determined for a process that has zero mean; so for this reason the mean
value 〈b〉 = b̄δ1 is subtracted from b.

One could contemplate to remove the average level from each member of the
ensemble separately, and this will give different results for the wave spectrum and
higher-order moments of the p.d.f. because the mean-sea-level correction is nonlinear
in wave amplitude. However, this is not in agreement with experimental practice, as
one intends to make observations which are representative for the area of interest.
For example, if one derives frequency spectra from time series (after subtracting the
mean elevation), then these time series need to be sufficiently long in order to be
able to compare with the theoretical ensemble averages. A small segment of this
time series may be regarded as a certain member of the ensemble, and depending
on the number and the strength of the wave groups each segment will have a mean
elevation which in general will differ from the mean level over the whole time series. In
other words, correcting the signal for the mean elevation per segment would remove
an interesting low-frequency signal. As only the mean level over the whole time series
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is regarded as representative for the sea state we shall subtract the ensemble-average
elevation from the elevation signal. As a consequence, we consider instead of (27)

A = εa + ε2b̃(a, a∗) + ε3c(a, a∗), (28)

with b̃1 = b1 − b̄1δ1. As a result, A in (28) has now a zero mean value, and as a matter
of fact many terms will cancel in the subsequent calculations. Note that explicitly one
finds the following for b̄:

b̄1 = lim
k1→0

∫
dk2N2A

(2)
1,2,2.

Now substitute (28) in the expression for the second moments; then up to fourth
order in ε one finds

〈η̂1(t1)η̂
∗
2(t2)〉 = f1f2

{
ε2〈a1a

∗
2〉 + ε4

(
〈b̃1b̃

∗
2〉 + 〈a1c

∗
2〉 + 〈c1a

∗
2〉

+ 〈a1c−2〉 + 〈c1a−2〉 + 〈b̃1b̃−2〉
)}

+ c.c. (1 ↔ −2) . (29)

where for brevity a1 = a(k1, t1). The second moment consists of two groups of terms,
namely a term proportional to ε2, which will give in lowest order the free-wave
spectrum, and the rest of the terms, which, being O(ε4), contribute to the second-
order spectrum. However, the former term, being the dominant one, will also give
rise to a contribution to the second-order spectrum, as the free-wave action variable
a obeys the nonlinear Zakharov equation.

3.1.1. First-order spectrum and Stokes-frequency correction

In this section we are going to evaluate the second moment g2 = 〈a1(t1)a
∗
2(t2)〉 and

in particular its dependence on the timescale τ = t2 − t1. The τ dependence of g2(τ ) is
obtained from the Zakharov equation (19), where it is noted that g2 satisfies according
to (25) the initial condition g2(τ = 0) = N1δ1−2. Evaluating the first τ derivative of g2

one finds

∂

∂τ
g2 = iω2g2 + i

∫
dk3,4,5〈a1(t1)a3(t2)a

∗
4(t2)a

∗
5(t2)〉δ2+3−4−5.

The evolution equation for g2 is solved by means of the multiple timescale technique.
Thus, one introduces the fast timescale τ0 = τ and the slow timescale τ2 = ε2τ , together
with an expansion of g2 in terms of the small parameter ε2: g2 = ε2g

(2)
2 + ε4g

(4)
2 + · · · .

In the lowest order one then finds(
∂

∂τ0

− iω2

)
g

(2)
2 = 0,

with solution

g
(2)
2 = G1(τ2)δ1−2e

iω1τ0, (30)

where G1(τ2) = G(k1, τ2) is still a function of the slow timescale τ2. The second-order
equation becomes (

∂

∂τ0

− iω2

)
g

(4)
2 = − ∂

∂τ2

g
(2)
2 + S2,

and using the closure assumption

〈a1(t1)a3(t2)a
∗
4(t2)a

∗
5(t2)〉 = ε4G1G3 exp(iω1τ0){δ1−4δ3−5 + δ1−5δ3−4}
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the source function S2 becomes

S2 = 2iG1e
iω1τ0

∫
dk3T1,3,3,1G3.

Removal of secularity in the second-order equation then gives the slow-time evolution
of G(τ2),

∂

∂τ2

G1 = 2iG1

∫
dk3T1,3,3,1G3,

which is all that is needed to evaluate the second-order corrections related to the
Stokes-frequency correction.

Returning now to the wavenumber–frequency spectrum (23) we use (30) in (29) to
obtain

F (k, Ω) =
f 2(k)

2π

∫
dτ
{
G(k, τ2)e

i(ω1−Ω)τ + G∗(−k, τ2)e
−i(ω1+Ω)τ

}
.

Since G is a slowly varying function of time, it is possible to give an approximate
expression for the wavenumber–frequency spectrum by means of partial integration.
Alternatively, one may perform a Taylor expansion of G(τ ) for small time. The result is

F (k, Ω) 
 f 2(k)

[
G(k, 0)δ(Ω − ω(k)) + i

∂G(k, 0)

∂τ2

δ′(Ω − ω(k))

]
+ c.c. (k → −k, Ω → −Ω).

Making use of the evolution equation for G and the initial condition G(τ = 0) = N

the eventual result is

F (k, Ω) = FL+S(k, Ω) + (k → −k, Ω → −Ω), (31)

where

FL+S(k, Ω) =
1

2
E0δ(Ω − ω(k)) − 1

2
E0δ

′(Ω − ω(k))

∫
dk1 T̂0,1,1,0E1,

with T̂0,1,1,0 = T0,1,1,0/f
2
1 and E being the lowest order surface-elevation spectrum,

E(k) =
ωN(k)

g
. (32)

The first term in (31), proportional to a δ function, corresponds to the familiar
expression for the wavenumber–angular-frequency spectrum of linear ocean waves
(cf. Komen et al. 1994), while the term proportional to the derivative of the δ function
represents a correction due to the Stokes frequency. The latter term is of the order
of the square of the wave spectrum and is formally as important as the contributions
of the bound waves to the wave spectrum.

3.1.2. Nonlinear and quasi-linear corrections

Continuing with the evaluation of the second moment of the surface elevation
we are now going to determine the higher-order contributions that are O(ε4). Since
these contributions are of higher order it is sufficient to use the time evolution of the
action variables according to linear theory (cf. (30)). The ensemble averages involving
a, b and c may be further evaluated by using the quadratic and cubic parts of the
canonical transformation. Note that although 〈a1a2〉 vanishes this is not the case for
correlations such as 〈a1c−2〉 because c−2 contains a cubic term which correlates with
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a1. In this fashion one finds

〈a1c−2 + c1a−2〉 = 2δ1−2e
iω1τ

{
N1

∫
dk2N2B

(3)
−1,1,2,2 + N−1

∫
dk2N2B

(3)
1,−1,2,2

}
,

while

〈a1c
∗
2 + c1a

∗
2〉 = 4δ1−2N1e

iω1τ

∫
dk2N2B

(2)
1,2,2,1.

Furthermore

〈b̃1b̃−2〉 = 2δ1−2

∫
dk3,4N3N4

[
A

(1)
1,3,4A

(3)
−1,3,4δ1−3−4e

i(ω3+ω4)τ

+A
(3)
1,3,4A

(1)
−1,3,4δ1+3+4e

−i(ω3+ω4)τ + 2A
(1)
4,3,1A

(1)
3,4,−1δ1+3−4e

−i(ω3−ω4)τ
]
,

while

〈b̃1b̃
∗
2〉 = 2δ1−2

∫
dk3,4N3N4

[
A

(1)
1,3,4A

(1)
1,3,4δ1−3−4e

i(ω3+ω4)τ

+A
(3)
1,3,4A

(3)
1,3,4δ1+3+4e

−i(ω3+ω4)τ + 2A
(1)
4,3,1A

(1)
4,3,1δ1+3−4e

−i(ω3−ω4)τ
]
.

Combining everything together, we obtain the fourth-order contribution to the second
moment, and from this one immediately then infers R(k, τ ) introduced in (22).
According to (23) the wavenumber–frequency spectrum is the Fourier transform of
R with respect to time τ , and as a consequence we find the result

F (k1, Ω1) = FL+S(k1, Ω1) +
1

2

∫
dk2,3E2E3

{
A2

2,3δ1−2−3δ(Ω1 − ω2 − ω3)

+ B2
2,3δ1+2−3δ(Ω1 + ω2 − ω3) + 2C2,2,3,3δ1−2δ(Ω1 − ω2)

}
+ (k1 → −k1, Ω1 → −Ω1), (33)

where we have added FL+S(k1, Ω1) from (31), while

A2,3 =
f2+3

f2f3

(
A

(1)
2+3,2,3 + A

(3)
−2−3,2,3

)
, B2,3 =

1

2

f2−3

f2f3

(
A

(2)
3−2,2,3 + A

(2)
2−3,3,2

)
(34)

and

C0,1,2,3 = B̂
(2)
0,3,2,1 + B̂

(3)
−0,1,2,3 =

f0

f1f2f3

(
B

(2)
0,3,2,1 + B

(3)
−0,1,2,3

)
(35)

Here, the transfer coefficients A and B have a fairly straightforward physical
interpretation, as A measures the strength of the generation of the sum of two waves
and hence measures the strength of the generation of second harmonics, while B
measures the generation of low wavenumbers and hence also measures the generation
of the mean sea level induced by the presence of wave groups. Apart from a factor
of two these coefficients coincide with the work of Longuet-Higgins (1963) on the
second-order corrections to the sea-surface elevation. The coefficient C measures the
correction of the first-order amplitude of the free waves by third-order nonlinearity.
The transfer coefficients A and B are symmetric in their indices,

A2,3 = A3,2, B2,3 = B3,2,

while

A2,3 = A−2,−3, B2,3 = B−2,−3

also holds.
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The expression for the spectrum F (k1, Ω1) may be further simplified because the
presence of the δ functions allows the evaluation of a number of integrals, but no
details will be presented here. It suffices to point out that the nonlinear terms (the
ones involving A and B) in (33) agree with the general result obtained by Barrick &
Weber (1977), and furthermore, in the special case of one-dimensional propagation,
the nonlinear part of the wavenumber–angular-frequency spectrum is found to agree
with the result given by Komen (1980), who corrected some misprints found in Barrick
& Weber (1977).

3.2. The wavenumber spectrum

According to the marginal distribution law (21) the wavenumber spectrum F (k)
follows from the integration of the wavenumber–frequency spectrum (33) over angular
frequency. The general result is

F (k1) =
1

2
E1 +

1

2

∫
dk2,3E2E3

{
A2

2,3δ1−2−3 + B2
2,3δ1+2−3

}
+ E1

∫
dk2E2C1,1,2,2 + {k1 → −k1} , (36)

From (36) it is seen that the second-order wavenumber spectrum has a fully-nonlinear
and a quasi-linear term only. When the wavenumber–frequency spectrum is integrated
over angular frequency the contribution by the Stokes-frequency correction vanishes,
as expected, as this term is proportional to the derivative of the δ function with respect
to Ω1. This is in agreement with the expectation, as the wavenumber spectrum, being
equal to the Fourier transform of the spatial correlation function ρ(ξ , 0), obviously
does not explicitly depend on the time evolution as given by the Zakharov equation.
It is emphasized that result (36) is for the ‘frozen’ surface-elevation spectrum, and
therefore the wavenumber spectrum F (k) is an even function of wavenumber as can
easily be verified.

No systematic study has been undertaken so far to investigate under what conditions
the result for the wavenumber spectrum (36) converges. For deep-water waves and
for realistic wave spectra it was found, and this will be shown in a moment, that the
changes to the first-order spectra were small. The situation is different for shallow-
water waves because the interaction coefficients become quite large. For the first-
order spectra that have been studied in this paper it appears that the changes remain
relatively small for kD > 1. In the opposite case one might even obtain negative
spectra, which is of course highly undesirable.

Before we discuss a number of special cases, namely the case of a single wavetrain
and the one-dimensional case of a continuous spectrum of waves propagating in
one direction, we mention that using numerical integration it can be shown that the
second-order surface-elevation spectrum as given in (36) has the special property that
its variance vanishes when the contribution to the spectrum at zero wavenumber
is ignored. This is discussed in more detail when moments of the wavenumber and
frequency spectrum are discussed in § 3.3.2.

3.2.1. Single wavetrain

In this case the first-order spectrum is given by

E(k) = m0δ(k − k0), (37)
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where m0 is the zero moment, and substitution of (37) into (36) gives

F (k) =
1

2
m0

[
1 + 2m0

(
B̂

(2)
0,0,0,0 + B̂

(3)
−0,0,0,0

)]
δ(k − k0)

+
1

2
A2

0,0m
2
0δ(k − 2k0) + (k ↔ −k) . (38)

Here, we consider the deep-water case only, while the shallow-water effects are treated
in § A 3. For deep-water waves in one dimension the expressions for B (2), B (3) and A(i)

are relatively simple coefficients. They become

B
(2)
0,0,0,0 = −1

2

k3
0

ω0

, B
(3)
−0,0,0,0 =

1

4

k3
0

ω0

,

while

A
(1)
0+0,0,0 =

1

4

(
2g

ω0+0

) 1
2

(1 +
√

2)
k2

0

ω0

, A
(3)
−0−0,0,0 =

1

4

(
2g

ω0+0

) 1
2

(1 −
√

2)
k2

0

ω0

.

Hence, the coefficients in (38) read

B̂
(2)
0,0,0,0 = −k2

0, B̂
(3)
−0,0,0,0 =

k2
0

2
, A2

0,0 = k2
0, (39)

and therefore, from (38) one obtains as positive wavenumber spectrum F+(k) =
2F (k) (k > 0),

F+(k) = m0

{(
1 − k2

0m0

)
δ(k − k0) + k2

0m0δ(k − 2k0)
}

. (40)

It is immediately evident from the above expression that the canonical transformation
gives a second-order correction to the shape of the wave spectrum, which results in
an additional second-harmonic peak at k = 2k0, while the energy of the first harmonic
at k = k0 also has a correction. In agreement with the energy preserving property of
the canonical transformation the wave variance of the total spectrum is, however,
unchanged as ∫

dk F+(k) = m0.

Therefore, the increase in wave variance due to the presence of the peak at twice the
wavenumber k0 is exactly compensated by the second-order correction to the energy
of the first harmonic. The latter correction can be traced back to the interaction
coefficients B (2) and B (3) (see (38)). In particular, B (2) causes a reduction of the wave
variance at the first harmonic (see (39)), and as explained in § A 1 the form of this
coefficient has been chosen in such a way that the free-wave action variable a obeys
an evolution equation which is Hamiltonian. In § A3 we derive the wave spectrum
of a single wavetrain in a slightly different fashion by writing down the canonical
transformation for a single wavetrain (A 14) and by deriving the corresponding
expression for the surface elevation. It is then straightforward to obtain the wave
spectrum by evaluation of the Fourier transform of the spatial correlation function
(cf. (A 19)). The present expression for the single-wave spectrum given in (40) is in
perfect agreement with the deep-water version of (A 19) given in § A3.

In § A 3 it is also pointed out that the usual Stokes expansion for a single wavetrain
is not unique. In fact, there is a whole family of solutions that satisfies the Hamilton
equations (17). The canonical transformation for the single wavetrain belongs to this
family. This transformation is unique, however, because the single mode is regarded
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as the limit of the continuous case, while the canonical transformation for general
wave spectra has to satisfy the additional requirement that the equations of motion
remain Hamiltonian.

3.2.2. Continuous spectrum of waves propagating in one direction

We now take the case of one-dimensional propagation, and we assume that the
waves are propagating in the positive x direction. Therefore,

E(k) =

{
E(k), k > 0,

0, k < 0.

For this choice of lowest order wave spectrum the expression for the wave spectrum
(36) may be simplified considerably. The positive wavenumber spectrum becomes

F+(k1) = E1 + 2E1

∫ ∞

0

dk2E2

(
B̂

(3)
−1,1,2,2 + B̂

(2)
1,2,2,1

)
+

∫ k1

0

dk2E2E1−2A2
2,1−2

+

∫ ∞

0

dk2E2E1+2B2
2,1+2 +

∫ ∞

k1

dk2E2E2−1B2
2,2−1. (41)

For numerical evaluation of expression (41) one needs to rewrite the convolution
integrals, in particular the third and the fifth term of the right-hand side, because the
argument k1 −k2 or k2 −k1 vanishes in the integration range. When both k1 and k2 are
large, the integral involves the product of energy at low wavenumbers, which is large,
with energy at high wavenumbers, giving very noisy results for the high-wavenumber
spectrum (unless one would be able to discretize with very large resolution). In order
to avoid noisy results I have transformed the third and the fifth term in such a way
that these conditions do not occur. For example in the third term the integration
interval is split in two, namely from 0 to k1/2 and from k1/2 to k1. Next, because
the integrals are of the convolution type and A is symmetric, it is straightforward to
show that the second integral equals the first. Furthermore, the fifth integral can be
written as an integral over the domain 0 to ∞ by using the transformation k2 −k1 = k3.
Then, using the symmetry property of A, the result is identical to the fourth integral.
As a consequence, (41) becomes

F+(k1) = E1 + 2E1

∫ ∞

0

dk2E2

(
B̂

(3)
−1,1,2,2 + B̂

(2)
1,2,2,1

)
+ 2

∫ k1/2

0

dk2E2E1−2A2
2,1−2

+ 2

∫ ∞

0

dk2E2E1+2B2
2,1+2. (42)

Note that substitution of the single-mode spectrum given in (37) into (42) yields result
(40).

In agreement with Creamer et al. (1989) the second-order spectrum consists of
two contributions, a fully nonlinear contribution (the last two terms of (42)) and a
quasi-linear term (the second term of (42)). We will now show that in deep water the
fully nonlinear term is in agreement with the result of Barrick & Weber (1977), while
the expression for the quasi-linear term agrees with Creamer et al. (1989). In order to
show this one needs to evaluate the transfer coefficients for the one-dimensional case.
Making use of the work of Jackson (1979) and numerical evaluations I have found

A1,2 =
s1s2

2
|k1 + k2|, B1,2 = −s1s2

2
|k1 − k2|, (43)

where s1 and s2 denote the signs of the wavenumbers k1 and k2.
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Substitution of (43) into the fully nonlinear terms NL then gives

NL =
k2

1

2

∫ k1
2

0

dk2E2E1−2 +
k2

1

2

∫ ∞

0

dk2E2E1+2.

The first integral equals the integral with the same argument over the domain
(k1/2, k1), while the last integral can be rewritten in an integral over the domain
(k1, ∞), and the result becomes

NL =
k2

1

2

∫ ∞

k1/2

dk2E2E|1−2|,

which agrees with (2).
Next, the coefficients in the quasi-linear term are evaluated. In one dimension

I found (with the help of Miguel Onorato who used Mathematica) the simple
expressions

B̂
(2)
1,2,2,1 = −1

2
k2

1

(
1 +

ω2

ω1

)
, B̂

(3)
−1,1,2,2 =

1

2
k2

1

ω2

ω1

, → C1,1,2,2 = −1

2
k2

1, (44)

and the quasi-linear term QL becomes

QL = −k2
1E1

∫ ∞

0

dk2E2,

which agrees with the result of Creamer et al. (1989). The resulting spectrum, correct
to second order becomes

F+(k1) = E1 +
k2

1

2

∫ ∞

k1/2

dk2E2E|1−2| − k2
1E1

∫ ∞

0

dk2E2, (45)

which is in complete accord with result (7). Hence, it is concluded that the quasi-linear
term, evaluated with the formalism developed by Zakharov, plays an important role,
as it removes a divergent part from the fully nonlinear term. As a consequence,
it seems likely that the Hamiltonian approach of Zakharov combined with the
canonical transformation of Krasitskii leads to convergent results. The advantage of
this approach over the one by Creamer et al. (1989) is that we now immediately have
the generalization to two dimensions as well (see (36)).

As a final check of the results we have evaluated numerically the second-order
spectrum by using the general expression given in (42). All integrals in this paper
will be evaluated with the trapezoid rule on a grid with variable resolution. The
wavenumbers are on a logarithmic scale with �k/k = 0.10, and the total number of
waves is N = 80, therefore spanning a wavenumber range kmax/kmin =(1 + �k/k)N−1

which is typically a factor of 2000. The result of this integration is shown in figure 1
and coincides with the analytical result labelled with (3), (4) and (7). The second-order
spectrum remains indeed small compared to the first-order result. Furthermore, it has
been checked that also for the standing-wave case, which has potentially a stronger
nonlinearity, the quasi-linear term removes the divergent part of the nonlinear term. In
fact, in the latter case one finds that for deep-water waves the second-order spectrum
is precisely twice the one in the propagating example (cf. (45)).

3.3. Angular-frequency spectrum

In order to obtain the directional-frequency spectrum F (Ω, θ), where θ is the
propagation direction of the waves, we introduce polar coordinates in wavenumber
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space so that for example we have for the first-order spectrum

E(k)dk = E(k, θ)kdkdθ = E(Ω, θ)dΩdθ1 → E(k) = vg(k)E(Ω, θ)/k.

According to the marginal distribution law (21) the angular-frequency spectrum
follows from the integration of the wavenumber–frequency spectrum over the wave
vector k. However, our interest is in the directional-frequency spectrum F (Ω, θ), and
we define it by integrating F (k, Ω) over the absolute wavenumber k = |k| only and
by considering positive frequencies only (hence the factor of two):

F (Ω, θ) = 2

∫
kdk F (k, Ω), Ω > 0. (46)

A number of integrations in (46) may be performed because of the presence of three
δ functions in the wavenumber–frequency spectrum given in (33), and the directional-
frequency spectrum becomes after some straightforward algebraic manipulations

F (Ω1, θ1) = E(Ω1, θ1) − ∂

∂Ω1

{
E(Ω1, θ1)

∫
dΩ2dθ2 T̂1,2,2,1E(Ω2, θ2)

}

+ 2

∫ Ω1/2

0

dΩ2dθ2 E(Ω1 − Ω2, θ1)E(Ω2, θ2)A2
1−2,2

+ 2

∫ ∞

0

dΩ2dθ2 E(Ω1 + Ω2, θ1)E(Ω2, θ2)B2
1+2,2

+ 2E(Ω1, θ1)

∫
dΩ2dθ2 E(Ω2, θ2)C1,1,2,2. (47)

This is the main result of this section. For given first-order, free-wave spectrum
E(Ω, θ), (47) gives the second-order corrections to the free-wave spectrum. However,
it must be emphasized that all wavenumbers in the above mapping relation should be
converted to angular frequencies using the inverse of the dispersion relation (14): For
example k2 = k(Ω2), while k1−2 = k(Ω1 −Ω2) and k1+2 = k(Ω1 +Ω2). Although for deep
water the expressions for these wavenumbers can be obtained explicitly, for shallow
water this can only be done numerically using an iteration scheme.

It is instructive to compare the result for the frequency-direction spectrum with
the one for the wavenumber spectrum given in (36). It is then clear that the fully
nonlinear terms and the quasi-linear term in (47) have, regarding their form, a close
resemblance to the corresponding terms in the wavenumber spectrum. However, the
frequency-direction spectrum has an additional term which is related to a Doppler
shift of the frequency by nonlinear effects (the so-called Stokes-frequency correction).
Note that this term involves minus the derivative of the first-order frequency spectrum
with respect to frequency, and therefore, in deep water in which the Stokes-frequency
correction is positive the result will be a shift of the frequency spectrum towards
higher frequencies, while in shallow water in which the Stokes-frequency correction
is negative the frequency spectrum will be shifted towards lower frequencies. For
a detailed discussion of this effect on deep-water single wavetrains see Janssen &
Komen (1982).

3.3.1. Deep-water waves in one dimension

For one-dimensional deep-water waves it is fairly straightforward to obtain the
interaction coefficients (see (43) and (44) for A, B and C). Furthermore, the interaction
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Figure 2. The second-order effects on the frequency spectrum as functions of f/f0. In addition,
the effects of the fully nonlinear term, the quasi-linear term and the Stokes-frequency correction
are given separately.

coefficient T1,2,2,1 is given by the simple expression (Zakharov 1991)

T1,2,2,1 =

{
k1k

2
2, k2 < k1,

k2
1k2, k2 > k1.

Substituting all this in (47) the frequency spectrum for unidirectional waves becomes

F (Ω1) = E(Ω1) − 2

g2

∂

∂Ω1

E(Ω1)

{
Ω2

1

∫ Ω1

0

dΩ2 Ω3
2E(Ω2) + Ω4

1

∫ ∞

Ω1

dΩ2 Ω2E(Ω2)

}

+
1

2g2

{∫ Ω1/2

0

dΩ2 E(Ω1 − Ω2)E(Ω2)
[
(Ω2 − Ω1)

2 + Ω2
2

]2
+ Ω2

1

∫ ∞

0

dΩ2 E(Ω1 + Ω2)E(Ω2)(Ω1 + 2Ω2)
2)

}
− Ω4

1

g2
E(Ω1)

∫ ∞

0

dΩ2 E(Ω2).

(48)

Note that the fully nonlinear contribution to the second-order frequency spectrum
is in complete agreement with a result obtained by Komen (1980). Let us study in
more detail the angular-frequency spectrum and in particular the consequences of
the nonlinear corrections, for the realistic case of a Joint North Sea Wave Project
(JONSWAP) spectrum (Hasselmann et al. 1973) with the peak frequency Ω0 = 0.5,
the Phillips parameter αp =0.01 and the overshoot parameter γ = 1. In figure 2 we
show the frequency dependence of the total increment to the first-order JONSWAP
spectrum due to second-order effects, and in addition we show increments due to
the fully nonlinear term, the quasi-linear term and the Stokes-frequency correction
separately as given by (48). The fully nonlinear term is always positive and with
increasing frequency shows a sudden increase around twice the peak frequency, while
for large frequencies it has an f −1 tail. The quasi-linear term is always negative, and
it attains its minimum value around f = 1.5f0. This term also has an f −1 tail which,
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Figure 3. Comparison of the wavenumber and frequency spectra including the second-order
effects (grey line). For clarity the first-order spectrum (black line) and the second-order
contribution (dashed grey line) are shown as well. For deep-water waves the Stokes-frequency
correction is hardly visible near the peak of the frequency spectrum, while the second-order
effects have a pronounced impact on the high-frequency tail of the wave spectrum. However,
the second-order effects on the wavenumber spectrum are not visible.

as will be seen in a moment, cancels the tail of the fully nonlinear term in such a
way that in agreement with (49) the sum of the two terms has an f −3 behaviour.
For deep-water waves the Stokes-frequency correction gives rise to a shift of the
wave spectrum towards higher frequencies, and therefore in figure 2 we see a typical
negative–positive signature of this term. In the frequency range of 1.2f0 <f < 2f0 the
Stokes-frequency correction compensates the effect of the quasi-linear term, while for
large frequencies it falls off more rapidly than both the fully nonlinear term and the
quasi-linear term. Adding all contributions together it is seen that the main effect is a
shift of the low-frequency part of the wave spectrum towards higher frequencies, while
at high frequencies there is a small increase in spectral levels. One would conclude
from figure 2 that the Stokes-frequency correction plays an important role in the
modification of the frequency spectrum, but the main change is near the peak of
the first-order spectrum which has most of the variance. As a consequence, for the
present example the Stokes-frequency correction only gives a small modification of
the first-order spectrum, while the small increments at high frequency give a relatively
large modification of the first-order spectrum. This follows from figure 3(b) that
shows the first-order frequency spectrum, the contribution by second-order effects
and the total spectrum. Therefore, as far as the total spectrum is concerned, the main
second-order effect is a somewhat fatter high-frequency tail. Only for young, steep
windsea (having an overshoot parameter γ 
 3 and a Phillips parameter αp 
 0.02)
or, as will be evident in the next section, only in the fairly extreme circumstances of
shallow water a significant impact of the Stokes-frequency correction on the frequency
spectrum is to be found.

The presence of a somewhat fatter high-frequency tail in the frequency spectrum
has important consequences; so let us discuss this aspect in more detail. A fit of
the high-frequency part of the spectrum from 2 times the peak frequency until 10
times the peak frequency with a power law of the type f −m gives a slope m of
about 4. This is intriguing, as this slope has been reported frequently in observational
studies (Toba 1973; Kawaii, Okuda & Toba 1977; Mitsuyasu et al. 1980; Forristall
1981; Kahma 1981; Donelan, Hamilton & Hui 1985), but later experimental studies
suggest that at high frequencies there is a transition from f −4 to f −5 (e.g. Hara &
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Karachintsev 2003). There are also a number of theoretical explanations in favour of
an f −4 power law. These range from the familiar concept of the Kolmogorov inertial
energy cascade caused by the resonant four-wave interactions (Zakharov & Filonenko
1967) to Doppler shifting of short waves by the presence of the orbital motion of the
long waves (e.g. Banner 1990); Belcher & Vassilicos (1997) have explained the f −4

power law in terms of the dominance of bound waves (associated with sharp crested
free gravity waves) over the high-frequency free waves. Our explanation of a fatter
high-frequency tail comes closest to the work of Belcher & Vassilicos (1997). In the
present approach the occurrence of sharp crested waves is implicit in the choice of
the high-frequency tail of the first-order spectrum (a Phillips spectrum), but alternative
choices of a first-order spectrum will give rise to a fatter tail as well. Note that we
have considered unidirectional waves only, and it would be of interest to study effects
of directionality (cf. (47)) on wave-variance levels at high frequencies. This is left for
further study.

The presence of an enhanced tail in the high-frequency spectrum is also plainly
evident in the following simple example. Hence, for the Phillips spectrum (3), converted
to angular frequency space,

E(Ω) = αpg2Ω−5, Ω > Ω0,

it is possible to evaluate all integrals in (48) explicitly, but the resulting analytical
expression looks much more elaborate than the corresponding one for the
wavenumber spectrum (c.f. (3) and (4)); so we will not present these details. It is only
mentioned that the second-order corrections to the angular-frequency spectrum play
indeed a much more important role than in case of the wavenumber spectrum. To be
definite, from the exact solution one may obtain an asymptotic expansion in powers
of the square of Ω/Ω0, valid for large frequencies,

F (Ω) 
 E(Ω)

(
1 +

αp

2

Ω2

Ω2
0

)
, Ω 
 Ω0, (49)

which shows that there is a considerable contribution to the frequency spectrum by the
bound waves as it scales with Ω−3. In sharp contrast, the contribution of the bound
waves to the wavenumber spectrum scales apart from a logarithmic dependence as
k−3, which is a similar behaviour as the first-order spectrum (cf. (8)). Therefore,
bound waves give rise to a fatter high-frequency tail, while at the same time in the
wavenumber domain the contribution of the bound waves is small. This is illustrated
in figure 3(a) in which the wavenumber spectrum shows hardly any change in the
high-wavenumber tail due to the bound waves, while in figure 3(b) there are visible
changes to the frequency spectrum to be noted.

3.3.2. A remark on moments of the spectrum

It can be readily verified that the zeroth moment of the second-order spectrum for
the case of one-dimensional propagation vanishes. This follows from the numerical
evaluations in deep water and also in shallow water when the contributions to
the wave spectrum at zero wavenumber are ignored. The question whether this
conservation property can be proven in an analytical manner is therefore of interest.
For deep-water waves this follows immediately from an integration of the general
result for the wavenumber spectrum (36) over wavenumber with the result

〈η2〉 =

∫
dk1E1 +

∫
dk1 dk2T1,2E1E2, (50)
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where

T1,2 = A2
1,2 + B2

1,2 + 2C1,1,2,2.

Upon using the expressions for the interaction coefficients given in (43) and (44)
the vanishing of the second integral follows at once, as the transfer coefficient T is
antisymmetric: T1,2 = −T2,1. Hence, even in the presence of bound waves, the wave
variance is given by the integral over the first-order spectrum only. A similar proof
may be given for the second-order frequency spectrum, while this also follows in a
trivial way from the wavenumber–frequency spectrum and the marginal distributions
laws (21). Note that I have been unable to obtain a proof of this property of the
second-order spectrum for two-dimensional propagation in deep water. However,
Sergei Annenkov (2009, private communication), who read a first draft of the present
paper, pointed out to me that he managed to prove that the transfer coefficient
T1,2 is also antisymmetric in the case of two-dimensional propagation of deep-water
waves. To this end he used Maple to express the transfer coefficient in terms of
the wavenumber and angular frequency. For shallow-water waves only an analytical
proof is available in the case of a single wavetrain. To that end one uses the expression
for the spectrum of a single wavetrain given in (A 19) and ignores the contribution
at zero wavenumber. Upon using (A 17) the vanishing of the variance of the second-
order spectrum follows at once. It should be clear, however, that all other moments
of the spectrum are affected by the presence of bound waves. We will discuss this
in some detail for the mean-square slope of deep-water waves, as this quantity is
relevant in satellite-retrieval algorithms, the albedo of the sea surface and in air–sea
interaction studies. It is important to realize that in the presence of bound waves
the mean-square slope, mss , does not follow from the usual fourth moment of the
frequency spectrum. For free waves, obeying the linear dispersion relation Ω = ω(k)
it can be shown that indeed

∫
dk k2F (k) =

∫
dΩ (Ω4/g2)F (Ω), and hence the fourth

moment of the frequency spectrum equals the mean-square slope. However, bound
waves do not obey the dispersion relation from linear theory, while, in addition, the
frequency spectrum shifts towards higher frequencies because of the Stokes-frequency
correction. This is most easily understood by considering the example of a single
wavetrain. Substituting the expression for the spectrum of a single wavetrain, i.e.

E(k) = m0δ(k − k0),

in (33) one finds for the wavenumber–frequency spectrum

F (k, Ω) =
1

2
m0

(
1 − k2

0m0

)
δ(k − k0)δ(Ω − ω0) − k2

0m
2
0ω0δ(k − k0)δ

′(Ω − ω0)

+
1

2
k2

0m
2
0δ(k − 2k0)δ(Ω − 2ω0) + (k → −k, Ω → −Ω).

Here, the first term combines the linear term and the quasi-linear effect; the second
term represents the effect of the Stokes-frequency correction; and the third term gives
the generation of second harmonics. The wavenumber spectrum follows immediately
from an integration over angular frequency,

F (k) =

∫
dΩ F (k, Ω) = m0

(
1 − k2

0m0

)
δ(k − k0) + k2

0m
2
0δ(k − 2k0),

and hence the mean-square slope becomes

mss =

∫
dk k2F (k) = k2

0m0

(
1 + 3k2

0m0

)
.
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On the other hand, the frequency spectrum follows from the marginal distribution
law (46); hence

F (Ω) = m0

(
1 − k2

0m0

)
δ(Ω − ω0) − 2k2

0m
2
0ω0δ

′(Ω − ω0) + k2
0m

2
0δ(Ω − 2ω0),

and the fourth moment of the frequency spectrum m4 becomes

m4 =

∫
dΩ

Ω4

g2
F (Ω) = k2

0m0

(
1 + 23k2

0m0

)
.

Evidently there is a considerable difference between m4 and mss . There are two
reasons for this difference. First, the frequency of the waves is subject to a Doppler
shift caused by the Stokes-frequency correction which shifts the frequency spectrum
towards higher frequencies. Second, the second harmonic has a frequency 2ω0 and
a wavenumber 2k0, but according to the fourth moment the wave variance at 2ω0

has a wavenumber 4k0 as k =ω2/g =4ω2
0/g. Hence, for deep-water waves the fourth

moment m4 and the mean-square slope, mss , will be different. Returning now to
figure 3 in which a comparison of wavenumber and frequency spectra is shown, it
is immediately evident that also for a continuous spectrum the fourth moment is
larger than the mean-square slope, as due to the nonlinear corrections the level of
the high-frequency part of the frequency spectrum has increased. This has important
consequences for the estimation of the mean-square slope from frequency spectra as
obtained from buoy time series. Assuming that buoys can observe only frequencies
below a cutoff frequency, say 0.5 Hz, well-resolved sea states, corresponding to large
wave heights, are in particular prone to an overestimation of the mean-square slope.
Using a JONSWAP spectrum the overestimation due to the incorrect interpretation
of the fourth moment as a proxy for mean-square slope may be determined. For
example for a wind speed of 20 m s−1 and a wave height of 10 m the mean-square
slope may be overestimated by 30 %, while a low-wave-height case only gives an
overestimation of 5 %. Therefore, estimates of the mean-square slope from frequency
spectra may have considerable errors.

3.3.3. Shallow-water effects

Let us apply now the general expression for the directional-frequency spectrum
(47) to the case of shallow water. It was already mentioned that in order to evaluate
the second-order contribution to the frequency spectrum in waters of finite depth
the inverse of the dispersion relation (14) is required. However, in the shallow-water
case this inversion cannot be given in an analytical manner; therefore only numerical
results will be presented in this section.

The examples that will be discussed here are taken from the Coastal Engineering
Manual (US Army Corps of Engineers, 2002, chapter 4, p. II-4-16) on surf-zone
hydrodynamics. In this manual three examples of wave spectra in shallow water are
shown for depths of 3, 1.7 and 1.4 m, but only the first two cases will be considered,
as the shallowest example is in the surf zone, where violent breaking occurs, which
is not taken into account in the present context. As first-order spectrum we take a
JONSWAP spectrum with the peak angular frequency Ω0 = 2.1, the Phillips parameter
αp =0.015 and the overshoot parameter γ =7, with the frequency width σ = 0.07. For
depths D of 3 and 1.7 m the dimensionless depths k0D at the peak of the spectrum
are 1.65 and 1.00 respectively. For the case in the surf zone with D = 1.4 m the
dimensionless depth is 0.89 which is beyond the limit of convergence of the present
approach (47).
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Figure 4. The second-order effects on the frequency spectrum as functions of f/f0. The
effects of the fully nonlinear term, the quasi-linear term and the shift by the Stokes-frequency
correction are given separately as well. (a) The case D = 3 m (k0D = 1.49). (b) The case
D = 1.7 m (k0D = 1.00). Note the pronounced difference in the shift due to the Stokes-frequency
correction, being positive in (a) and negative in (b). Also note the change of scale suggesting
the sensitive dependence of the second-order spectrum on depth.

Let us study the increments for the cases D = 3 m and D = 1.7 m using the same
first-order spectrum. They are shown in figure 4. First of all note the change of
scale by a factor of 5 when going towards shallower water, indicating that indeed
the second-order spectrum depends in a sensitive manner on depth. Second, while
the increments for the nonlinear and quasi-linear terms are qualitatively similar, the
increments due to the Stokes-frequency correction are markedly different. The case of
k0D =1.49 (D = 3 m) is similar to the deep-water problem and has a positive
frequency shift, while for k0D = 1.00 (D = 1.7 m) the frequency shift is negative. This
is qualitatively in agreement with the well-known result that for a single wavetrain
the Stokes-frequency correction is positive for kD > 1.363, while it is negative in
the opposite case (Whitham 1974, p. 636; Janssen & Onorato 2007). However, the
present case is not quite narrowband, and by trial and error it was found that the
transition from positive shift to negative shift occurred at a slightly lower value of
the dimensionless depth, namely k0D 
 1.2. In contrast with deep-water waves the
increments due to the Stokes-frequency correction are now quite significant, and they
are visible near the peak of the total wave spectrum. This is illustrated in figure 5 in
which for the same first-order spectrum the sum of first-and second-order spectra is
shown for the two values of depth. Comparing the first-order spectrum with the total
spectrum it is clear that for D = 3 m there is hardly any shift of the spectrum, while
for the shallower case D = 1.7m there is a definite downshift of the total spectrum,
therefore once more supporting the sensitive dependence of the second-order spectrum
on depth. In particular, note the rapid increase of the low-frequency infra-gravity wave
energy by a factor of 10, while the dimensionless depth only decreases by about 60 %;
moreover, the second-harmonic peak appears to be sensitive to depth variations.
Finally, the increased high-frequency levels caused by second-order nonlinearity are
evident in figure 5. In both cases the high-frequency part of the spectrum follows
closely an f −4 power law for frequencies larger than 1Hz. Removing the quasi-linear
effect would, just as in the case of deep-water spectra, result in a much more rapid
divergence from the first-order spectrum. This is illustrated in figure 6 in which it
is clear that without the quasi-linear term higher levels in the high-frequency part
of the spectrum are obtained. Observations of the frequency spectrum were kindly
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Figure 5. Variance spectra as function of frequency (Hz) for two different values of depth
obtained from the same first-order spectrum, showing the sensitive dependence of the presence
of second harmonics and the wave-induced set-down on depth.

Observation
With quasi-linear

No quasi-linear

f

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1.0 1.2

F
(f

)

Figure 6. Impact of the quasi-linear term on the frequency spectrum for a depth of 1.7 m,
showing a much fatter high-frequency tail when the quasi-linear term is removed. Observations
obtained from Robert Jensen (personal communication, 2008) show a fairly good agreement
with the second-order spectrum when the quasi-linear term is included.

digitized by Robert Jensen from the Coastal Engineering Manual (US Army Corps of
Engineers, 2002), and they are shown in figure 6 as well. A fair agreement between
the theoretical spectrum (including the quasi-linear effect) and observations is found,
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in particular for the high-frequency part of the spectrum. Note that the generation
of second harmonics, both theoretically and experimentally, has been studied before
by, for example, Norheim et al. (1998). These authors investigated the consequences
of a stochastic formulation of the Boussinesq wave-shoaling equations, and a good
agreement with observations of the wave spectrum was found. However, there was
a tendency to overestimate the level of the high-frequency tail of the spectrum, and
this overestimation could perhaps have been avoided by introducing the quasi-linear
effect in their stochastic model. Finally, it is seen from figure 6 that the low-frequency,
infra-gravity part of the spectrum is completely determined by the fully nonlinear
term of (47). An extensive discussion and verification of this aspect of the second-
order theory has been presented by Herbers, Elgar & Guza (1994), who have pointed
out that the nonlinear term in (47) refers to the forced part of the infra-gravity waves,
which is usually only a small part of the total energy in the infra-gravity range.
However, using the observed bispectrum the contributions of the forced infra-gravity
waves from the observed directional wave spectrum may be isolated, and a good
agreement between observed forced and theoretical forced infra-gravity wave energy
is obtained. For more recent work see Toffoli et al. (2007).

4. Skewness and kurtosis for general wave spectra
Let us now try to determine the skewness parameter C3 and the kurtosis parameter

C4 for general wave spectra. These parameters measure deviations from the normal
distribution, and this information is of relevance for certain practical applications
such as the determination of the so-called sea-state bias as seen by an altimeter and
the detection of extreme sea states. The skewness and the kurtosis follow from the
third and fourth moments of the surface elevation p.d.f., and they are defined in this
paper as follows:

C3 =
μ3

μ
3/2
2

, C4 =
μ4

3μ2
2

− 1, (51)

where μn = 〈ηn〉, n= 2, 3, 4, are the second, third and fourth moments of the p.d.f.
of the surface elevation, while the first moment 〈η〉 is assumed to vanish. For a
Gaussian p.d.f. both C3 and C4 vanish. In order to evaluate these moments the
surface elevation is expressed in terms of the Fourier integral (13), and the Fourier
amplitudes are expressed in terms of the action variable A. In the next step we apply
the canonical transformation (18) which is of the form A= εa + ε2b + ε3c. Hence, the
moments may be expressed in terms of a, b(a, a∗) and c(a, a∗); hence these moments
may be evaluated when the statistics for a are known. The free action variable a

satisfies the Zakharov equation, and thus in principle the statistical properties of a

may be obtained. We have seen that for weakly nonlinear waves it is found that
in good approximation the stochastic variable a obeys Gaussian statistics, but as
shown by Janssen (2003) deviations from the normal distribution are important for
the dynamical evolution of the wave spectrum (due to four-wave interactions), which
may result in a significant contribution to the kurtosis. However, deviations from
normality are not important for the skewness of the sea surface.

The evaluation of these statistical parameters is an enormous effort, and as a
first step, in § A3 the skewness and the kurtosis as obtained from the canonical
transformation are determined for a single wavetrain. The single-mode result for the
skewness and the kurtosis will serve as a reference for checking the general results for
a spectrum of waves. These will be derived in the following sections.



Canonical transformation in the Hamiltonian theory of water waves 29

4.1. Skewness calculation

Relatively little attention will be paid to the derivation of skewness C3, as its general
form for deep-water waves is already known (cf. Longuet-Higgins 1963; Srokosz
1986). However, the present development is given because it is a direct generalization
of the deep-water result towards shallow waters.

Because of the assumption of a homogeneous sea the third moment μ3 becomes

μ3 = 〈η3〉 =

∫
dk1,2,3〈η̂1η̂2η̂3〉,

where the Fourier transform of η is related to the action variable A through (24).
Using this last equation one finds

μ3 =

∫
dk1,2,3f1f2f3 {〈A1A2A3〉 + 3〈A1A2A

∗
3〉 + c.c.} .

In order to make progress we use the expression of the bias-corrected action variable
(28), which is an expansion of the canonical transformation in terms of the small
steepness ε. Realizing that only a result correct to fourth order in ε is required one
finds

μ3 = ε3

∫
dk1,2,3f1f2f3{〈a1a2a3〉 + 3〈a1a2a

∗
3〉}

+ ε4

∫
dk1,2,3f1f2f3{3〈a1a2b̃3〉 + 6〈a1a

∗
2 b̃3〉 + 3〈a1a2b̃

∗
3〉} + c.c.

Invoking now the Gaussian statistics of the free-wave action variable a it is
immediately evident that the third moments such as 〈a1a2a3〉 vanish. In addition,
using the random-phase approximation on the fourth moment (cf. (26)), the moments
involving b̃ can all be expressed in terms of products of the action density N .
Eliminating then the action density in favour of the surface-elevation spectrum E and
using (32) the eventual result for the third moment becomes after setting ε = 1

μ3 = 3

∫
dk1,2E1E2(A1,2 + B1,2),

where A and B have been introduced in (34). Finally, the second moment μ2 = 〈η2〉
follows immediately from (50), and as only the lowest order result is required one
finds

μ2 
 m0 =

∫
dk1 E1;

as a consequence the skewness becomes

C3 =
3

m
3/2
0

∫
dk1,2E1E2(A1,2 + B1,2). (52)

Note that this expression for the skewness holds for both deep-water and shallow-
water waves. The skewness of the sea surface is, as expected, entirely determined by
the sum interactions as measured by A1,2 and the difference interactions as weighted
by B1,2. As a final check of the result the limit of a narrowband wavetrain in (52) was
taken, i.e. E1 = m0δ(k1 − k0), and it is straightforward to show that the result agrees
with the expression for a single wave given in § A3 (see (A 24)).
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4.2. Calculation of fourth moment

Using (13) and (15) the fourth moment becomes for a homogeneous sea state

μ4 = 〈η4〉 =

∫
dk1,2,3,4M1,2,3,4〈A1A2A3A4 + 4A1A2A3A

∗
4 + 3A1A2A

∗
3A

∗
4〉 + c.c., (53)

where M1,2,3,4 = (ω1ω2ω3ω4)
1/2/4g2.

Now substitute the canonical transformation (28) into (53), and retain only terms
up to sixth order in ε. The result is

μ4 =

∫
dk1,2,3,4M1,2,3,4

{
3ε4〈a1a2a

∗
3a

∗
4〉 + ε6

[
4〈c1a2a3a4〉 + 12〈c1a2a3a

∗
4〉

+ 4〈c∗
1a2a3a4〉 + 12〈c1a2a

∗
3a

∗
4〉 + 6〈a1a2b̃3b̃4〉 + 12〈a1a2b̃3b̃

∗
4〉 + 12〈a1a

∗
2 b̃3b̃4〉

+ 6〈a∗
1a

∗
2 b̃3b̃4〉 + 12〈a1a

∗
2 b̃3b̃

∗
4〉
]
+ c.c.

}
. (54)

Clearly, there is one fourth-order term, while the remaining terms, all connected
to the canonical transformation, are only sixth order in the steepness parameter ε.
The fourth-order term has already been discussed by Janssen (2003), where it has
been shown that the deviations from Gaussian statistics, as induced by the nonlinear
dynamics, give rise to a kurtosis C4 which is proportional to the square of the
Benjamin–Feir index. However, all the other terms in (54) are small, and therefore only
the lowest order contribution to the p.d.f., i.e. the Gaussian distribution, is required to
evaluate these terms. For this reason the fourth moment consists of two parts, namely

μ4 = μ
dyn
4 + μcan

4 ,

where a general expression for μ
dyn
4 is given in Janssen (2003). Here we concentrate

on the contribution of the canonical transformation to the fourth moment. It is
fairly straightforward to evaluate the correlations involving c, using the relevant
symmetries and the random phase approximation for the sixth moment, i.e.

〈a1a2a3a
∗
4a

∗
5a

∗
6〉 = N1N2N3 [δ1−4 (δ2−5δ3−6 + δ2−6δ3−5) + δ1−5 (δ2−4δ3−6 + δ2−6δ3−4)

+ δ1−6 (δ2−4δ3−5 + δ2−5δ3−4)] + O(ε8).

Introducing one additional interaction coefficient, namely

D0,1,2,3 =
f0

f1f2f3

(
B

(1)
0,1,2,3 + B

(4)
−0,1,2,3

)
,

which basically represents the strength of the third harmonic and expressing the
action density N in terms of the wave variance spectrum, the c terms become

12ε6

∫
dk1,2,3E1E2E3

{
C1,1,2,2 +

1

2
D1+2+3,1,2,3 +

1

2
C1+2−3,1,2,3

}
. (55)

The terms involving b̃ in (54) are a bit harder to deal with. The eventual result is

12ε6

∫
dk1,2,3E1E2E3

{
A1,3A2,3 + B1,3B2,3 + 2A1,3B2,3 +

1

2
A2

2,3 +
1

2
B2

2,3

}
. (56)

Combining (55) and (56) the fourth moment becomes

μcan
4 = 3ε4

∫
dk1,2,3E1E2 + 12ε6

∫
dk1,2,3E1E2E3

{
A1,3A2,3 + B1,3B2,3 + 2A1,3B2,3

+
1

2
A2

2,3 +
1

2
B2

2,3 + C1,1,2,2 +
1

2
D1+2+3,1,2,3 +

1

2
C1+2−3,1,2,3

}
. (57)
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Recall that the variance is given by (50), i.e.

〈η2〉 =

∫
dk1E1 +

∫
dk1 dk2E1E2

[
A2

1,2 + B2
1,2 + 2C1,1,2,2

]
. (58)

The kurtosis parameter Ccan
4 can now be evaluated for small steepness. The result,

after seting ε equal to one, is

Ccan
4 =

4

m2
0

∫
dk1,2,3E1E2E3

{
(A1,3 + B1,3)(A2,3 + B2,3) +

1

2
D1+2+3,1,2,3 +

1

2
C1+2−3,1,2,3

}
,

(59)

and this result is in agreement with the general form found by Onorato, Osborne &
Serio (2008), but the coefficient inside the curly brackets was not evaluated explicitly.
Here, we note that all the boldface terms in (57) and (58) cancel each other, leaving
a very simple expression for C4 indeed. Note also that all the terms in (59) have a
simple physical interpretation. The nonlinear interaction coefficient A corresponds
to the second harmonic; B gives the mean surface-elevation response; C gives the
third-order correction to the amplitude of the free gravity waves; and D corresponds
to the amplitude of the third harmonic. This interpretation becomes clearer when we
take in (59) the limit of a narrowband wavetrain, i.e. E1 = m0δ(k1 − k0). The result is
identical to (A 23) of § A3.

Finally, the total kurtosis is given by the sum of the canonical contribution and the
contribution by dynamics, i.e.

C4 = C
dyn
4 + Ccan

4 , (60)

where C
dyn
4 is given by (29) of Janssen (2003).

4.3. An illustrative example

It is of interest to evaluate the expressions for the skewness C3 and the kurtosis Ccan
4

for a given wave spectrum and to compare the result with its narrowband limit. For
the wave spectrum the very simple windsea spectrum (2) suggested by Phillips (1958)
was chosen. For the Phillips spectrum the significant steepness ε = k0m

1/2
0 = α1/2

p /2 and
the Phillips parameter αp = 0.04 was chosen in order to match the choice of steepness
in the case of a single wavetrain discussed in § A 3. To my knowledge only for the
skewness C3 in deep water an analytical expression is known (cf. Jackson 1979 with
a correction by a factor of two as pointed out by Srokosz 1986). Substituting (2) in
(52) and using the one-dimensional deep-water expressions for A and B given in (43)
one finds the simple expression

C3 = 2α1/2
p , k0D → ∞,

and for the present choice of the Phillips parameter the skewness becomes C3 = 0.4.
The numerical result for deep water, given in figure 7, is in perfect agreement with
the analytical result. However, in general the skewness and the kurtosis can only
be obtained from a numerical evaluation of (52) and (59). Figure 7 shows the
skewness and the kurtosis as functions of depth for two cases. The first case has
the spectrum given in (2), while the second one has a δ function spectrum of the
form E(k) = m0δ(k − k0) with the same variance as the first case and corresponds
to the single wavetrain example of § A 3. It is clear that these two cases give a
significantly different skewness and kurtosis, and hence knowledge of the spectral
shape is important in determining the value of the skewness and the kurtosis.

In any event Ccan
4 is found to increase fairly rapidly as the dimensionless depth

decreases when the waves approach the coast. However, the total kurtosis also has
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Figure 7. (a) The skewness C3 and (b) the kurtosis Ccan
4 for a steepness ε = 0.1 as functions

of the dimensionless depth x = k0D. The dashed line corresponds to the case of a Phillips
spectrum, and the solid line corresponds to the case of a single wavetrain with the same
variance, while the carrier wavenumber equals the peak wavenumber k0.

a contribution from the dynamics of the waves (see (60)) called C
dyn
4 . According to

Janssen & Onorato (2007), for unidirectional waves C
dyn
4 becomes negative at around

the value of the dimensionless depth k0D 
 1.363 which is the same point where
the Stokes-frequency correction vanishes. Combining the dynamical and canonical
contributions to the kurtosis it is found that the dynamical contribution dominates,
and the net result is that when unidirectional waves approach the coast the kurtosis
is seen to decrease with depth and even becomes negative. Hence, for unidirectional
waves in shallow water the occurrence of extreme waves is less likely than in deep
water. This perhaps surprising conclusion is connected to the generation of a wave-
induced current and the associated mean-sea-level change in shallow water. These
processes cause the vanishing of the Stokes-frequency correction at k0D 
 1.3 and slow
down the increase of Ccan

4 with decreasing dimensionless depth (see § A3). However,
it is emphasized that for broad directional spectra the picture may be different. See
the very recent numerical simulations by Toffoli et al. (2008, private communication)
in which only for narrow directional spectra the total kurtosis is found to be negative.
Broader spectra show a kurtosis which almost vanishes, corresponding to an almost
Gaussian sea state.

5. Conclusions
In the Hamiltonian formulation of surface gravity waves a key role is played by

the canonical transformation that eliminates the effects of non-resonant interactions
on the evolution of the free-wave action variable as much as possible. Therefore,
the canonical transformation provides us with an elegant method to separate the
non-resonant interactions (bound waves for example) from the important resonant
interactions as described by the Zakharov equation. In a wave prediction system the
evolution equation for the spectrum of an ensemble of ocean waves is solved. This
equation follows from the Zakharov equation and therefore gives the spectrum of the
free waves. In order to obtain the actual wave spectrum one still needs to take the
consequences of the canonical transformation into account.

Starting from the canonical transformation of surface gravity waves a general
expression for wavenumber and directional-frequency spectrum has been obtained.
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These diagnostic relations are valid for general two-dimensional spectra and may be
applied both in deep and shallow waters (kD � 1). For the wavenumber spectrum it is
found that there are two nonlinear corrections, one related to the generation of bound
waves and infra-gravity waves and one quasi-linear term giving a correction to the
energy of the free waves. In agreement with Creamer et al. (1989) when the general
result is applied to the case of one-dimensional propagation, the combination of the
nonlinear and quasi-linear corrections results in a small change to the first-order
free-wavenumber spectrum. This contrasts with the result of Barrick & Weber (1977)
for the second-order spectrum, who only considered the fully nonlinear term. This
term on its own leads to divergent behaviour of the total wave spectrum. In fact, for
high wavenumbers the second-order correction is more important than the first-order
one, signalling that the perturbation approach would fail.

A key role in this development is played by the quasi-linear term which removes
the divergent behaviour of the fully nonlinear term. In other words, a key role is
played by the B

(2)
1,2,3,4 term of the canonical transformation. On the one hand, this

terms assures that the Zakharov equation is Hamiltonian; on the other hand, this
terms assures the convergent behaviour of the second-order spectrum. It is therefore
important to check that the form of this term is correct. This is reported in § A1.

The result of this work on the wavenumber spectrum is relevant for estimation
of the sea-state bias as seen by an altimeter as was discussed by Elfouhaily et al.
(1999). These authors used the second-order theory of Longuet-Higgins (1963), which
is equivalent to disregarding the quasi-linear term in (36). They basically used (36) to
obtain the first-order spectrum E(k) from the observed wave spectrum F (k). Because
the quasi-linear term is disregarded, it is not a big surprise that the first-order
spectrum E(k) is found to deviate to a large extent from the observed spectrum.
As a consequence there will be considerable deviations from the ‘classical’ sea-
state bias results obtained by Jackson (1979) and Srokosz (1986), because these
authors assumed that the first-order spectrum is approximately given by the observed
spectrum. However, when retaining the quasi-linear term in (25) the differences
between the first-order spectrum and the observed one are expected to be small. This
work therefore justifies the approach followed by Jackson (1979) and Srokosz (1986).
The directional-frequency spectrum has, compared to the wavenumber spectrum, an
additional correction related to the well-known Stokes-frequency correction. In deep
water the effect of the Stokes-frequency correction is usually quite small. Nevertheless,
we have seen that near the peak of the spectrum this term compensates to a large
extent the effect of the quasi-linear self-interaction. In shallow water, gravity waves
are steeper, and as a consequence the Stokes-frequency correction has a pronounced
impact on the shape of the frequency spectrum. Also, the fully nonlinear and the
quasi-linear term have a considerable impact. The fully nonlinear term will give rise
to forced infra-gravity waves, while the combination of the fully nonlinear term and
the quasi-linear term determines second harmonics and the level of the high-frequency
tail. These last two aspects of the spectral shape in shallow water have been studied
extensively before (see for example Herbers et al. 1994; Norheim et al. 1998), and a
good agreement with observations of the wave spectrum has been obtained, although
perhaps a better agreement would have followed if the quasi-linear effect had been
included.

Expressions of the skewness and kurtosis parameters, which are extensions of known
results for deep-water narrowband wavetrains to the case of general spectra in waters
of finite depth, were derived. These parameters are fairly sensitive to effects of the
shape of the wave spectrum, and this should be relevant for statistical distributions of
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wave crests and the envelope of a wavetrain, for example. It is also made plausible that
the kurtosis of the sea-surface elevation decreases when waves approach the coast,
and this is caused by the wave-induced mean sea level which for one-dimensional
wave groups is negative. Hence, for one-dimensional waves extreme sea states are less
likely to occur in waters of intermediate depth (kD 
 1). Extension of this work to
the case of two-dimensional propagation is desirable, as it is already known that, for
example, the dynamical part of the kurtosis reduces considerably when the directional
width of the wave spectrum increases (see Waseda 2006; Gramstad & Trulsen 2007).
First estimates, using parameterizations of the directional effect, do suggest, however,
that the conclusion that waves are less extreme in shallow waters still holds.

Discussions with J. J. Green and Miguel Onorato were very helpful in completing
this laborious work. Miguel Onorato was kind enough to evaluate a number of
transfer coefficients by means of Mathematica. Also, Robert Jensen was so kind as to
digitize a number of shallow-water spectra from the Coastal Engineering Manual (US
Army Corps of Engineers, 2002). Finally, Sergei Annenkov provided a semi-analytical
proof that, for deep-water waves the canonical transformation conserves the wave
variance.

Appendix. Remarks on Zakharov equation
A.1. Canonical transformation

In order to obtain the coefficients in the canonical transformation A(a, a∗), given in
(18), we substitute the transformation into the Hamilton equation (17), and considering
weakly nonlinear waves we evaluate the resulting equation to third order in amplitude
only. The time derivatives in the quadratic and cubic terms of the transformation
are evaluated by means of the anticipated result (19) for the evolution in time of the
free-wave canonical variable a(k, t). As only accuracy up to third order in amplitude
is required we may use the linear approximation ∂a1/∂t + iω1a1 = 0.

The result is

∂

∂t
a1 + iω1a1 = −i

∫
dk2,3

{[
�1−2−3A

(1)
1,2,3 + V

(−)
1,2,3

]
a2a3δ1−2−3

+
[
�1+2−3A

(2)
1,2,3 + 2V

(−)
3,2,1

]
a∗

2a3δ1+2−3 +
[
�1+2+3A

(3)
1,2,3 + V

(+)
1,2,3

]
a∗

2a
∗
3δ1+2+3

}
− i

∫
dk2,3,4

{[
Z

(1)
1,2,3,4 + W

(1)
1,2,3,4 + �1−2−3−4B

(1)
1,2,3,4

]
a2a3a4δ1−2−3−4

+
[
Z

(2)
1,2,3,4 + W

(2)
1,2,3,4 + �1+2−3−4B

(2)
1,2,3,4

]
a∗

2a3a4δ1+2−3−4

+
[
Z

(3)
1,2,3,4 + 3W

(1)
4,3,2,1 + �1+2+3−4B

(3)
1,2,3,4

]
a∗

2a
∗
3a4δ1+2+3−4

+
[
Z

(4)
1,2,3,4 + W

(4)
1,2,3,4 + �1+2+3+4B

(4)
1,2,3,4

]
a∗

2a
∗
3a

∗
4δ1+2+3+4

}
, (A 1)

where �1−2−3 = ω1 − ω2 − ω3, �1+2−3−4 = ω1 + ω2 − ω3 − ω4, etc. Furthermore, the
coefficients Z(i)(i =1, 4) are given in terms of the second-order coefficients V (±) and
A(i) as follows:

Z
(1)
1,2,3,4 = 2/3

[
V

(−)
1,2,1−2A

(1)
3+4,3,4 + V

(−)
1,3,1−3A

(1)
2+4,2,4 + V

(−)
1,4,1−4A

(1)
2+3,2,3

+V
(−)
3,1,3−1A

(3)
−2−4,2,4 + V

(−)
4,1,4−1A

(3)
−2−3,2,3 + V

(−)
2,1,2−1A

(3)
−3−4,3,4

]
, (A 2)
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while

Z
(2)
1,2,3,4 = −2

[
V

(−)
1,3,1−3A

(1)
4,2,4−2 + V

(−)
1,4,1−4A

(1)
3,2,3−2 + V

(−)
3,1,3−1A

(1)
2,4,2−4

+ V
(−)
4,1,4−1A

(1)
2,3,2−3 − V

(−)
1+2,1,2A

(1)
3+4,3,4 − V

(+)
−1−2,1,2A

(3)
−3−4,3,4

]
(A 3)

and

Z
(3)
1,2,3,4 = 2

[
V

(−)
1,4,1−4A

(3)
−2−3,2,3 − V

(−)
1+2,1,2A

(1)
4,3,4−3 − V

(−)
1+3,1,3A

(1)
4,2,4−2

+ V
(−)
4,1,4−1A

(1)
2+3,2,3 − V

(+)
1,3,−1−3A

(1)
2,4,2−4 − V

(+)
−1−2,1,2A

(1)
3,4,3−4

]
, (A 4)

and, finally,

Z
(4)
1,2,3,4 = 2/3

[
V

(+)
−1−2,1,2A

(1)
3+4,3,4 + V

(+)
−1−3,1,3A

(1)
2+4,2,4 + V

(+)
−1−4,1,4A

(1)
2+3,2,3

+ V
(−)
1+3,1,3A

(3)
−2−4,2,4 + V

(−)
1+4,1,4A

(3)
−2−3,2,3 + V

(−)
1+2,1,2A

(3)
−3−4,3,4

]
. (A 5)

We shall comment on how Z(i)(i =1, 4) was obtained in a short while. Let us first
simplify the second-order contributions to (A 1). This is straightforward, as for gravity
waves there are no resonant three-wave interactions. Then, A(i) can be chosen in such
a way that the second-order terms vanish, and as a consequence we obtain

A
(1)
1,2,3 = −

V
(−)
1,2,3

ω1 − ω2 − ω3

, A
(2)
1,2,3 = −2

V
(−)
3,2,1

ω1 + ω2 − ω3

, A
(3)
1,2,3 = −

V
(+)
1,2,3

ω1 + ω2 + ω3

,

and the evolution equation for a(k, t) becomes

∂

∂t
a1 + iω1a1 =

− i

∫
dk2,3,4

{[
Z

(1)
1,2,3,4 + W

(1)
1,2,3,4 + �1−2−3−4B

(1)
1,2,3,4

]
a2a3a4δ1−2−3−4

+
[
Z

(2)
1,2,3,4 + W

(2)
1,2,3,4 + �1+2−3−4B

(2)
1,2,3,4

]
a∗

2a3a4δ1+2−3−4

+
[
Z

(3)
1,2,3,4 + 3W

(1)
4,3,2,1 + �1+2+3−4B

(3)
1,2,3,4

]
a∗

2a
∗
3a4δ1+2+3−4

+
[
Z

(4)
1,2,3,4 + W

(4)
1,2,3,4 + �1+2+3+4B

(4)
1,2,3,4

]
a∗

2a
∗
3a

∗
4δ1+2+3+4

}
.

Before we start eliminating a number of the third-order terms it is important to
mention a number of ‘natural’ symmetries. These are symmetries that specify that the
integrals occurring in the Hamiltonian (16) are unaffected by relabelling of the dummy
integration variables. The second-order coefficient V (−) only satisfies symmetry with
interchanging of the last indices; hence, V

(−)
1,2,3 =V

(−)
1,3,2, while V

(+)
1,2,3 is symmetric under

all transpositions of 1, 2 and 3. Furthermore, W
(1)
1,2,3,4 is therefore symmetric under

the transpositions of 2, 3, 4, whereas W
(4)
1,2,3,4 is symmetric under transpositions of all

its indices. Also, W
(2)
1,2,3,4 remains symmetric under transpositions within the groups

(1,2) and (3,4). In addition, the coefficients should allow the Hamiltonian to be a
real quantity. For the Hamiltonian (16) this gives one additional condition: W

(2)
1,2,3,4

should be symmetric under transpositions of the pairs (1,2) and (3,4). The coefficients
occurring in the canonical transformation only enjoy a limited number of ‘natural’
symmetries; B

(1)
1,2,3,4 is symmetric with respect to interchanges of 2, 3 and 4, while

B
(2)
1,2,3,4 = B

(2)
1,2,4,3 and B

(3)
1,2,3,4 = B

(3)
1,3,2,4 only. Finally, B (4)

1,2,3,4 is invariant for interchanging



36 P. A. E. M. Janssen

the indices 2, 3 and 4. In the construction of Z(i)(i = 1, 4) we have made sure that
they enjoy the same symmetries as B (i)(i = 1, 4).

Let us now eliminate those third-order terms that do not give rise to resonant
four-wave interactions. These are the terms involving δ1−2−3−4, δ1+2+3−4 and δ1+2+3+4.
These terms vanish when the corresponding B coefficients satisfy

B
(1)
1,2,3,4 = − 1

ω1 − ω2 − ω3 − ω4

(
Z

(1)
1,2,3,4 + W

(1)
1,2,3,4

)
,

B
(3)
1,2,3,4 = − 1

ω1 + ω2 + ω3 − ω4

(
Z

(3)
1,2,3,4 + 3W

(1)
4,3,2,1

)
,

B
(4)
1,2,3,4 = − 1

ω1 + ω2 + ω3 + ω4

(
Z

(4)
1,2,3,4 + W

(4)
1,2,3,4

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

As a consequence the evolution equation for a(k, t) becomes

∂

∂t
a1 + iω1a1 = −i

∫
dk2,3,4T1,2,3,4a

∗
2a3a4δ1+2−3−4, (A 6)

where we have introduced the interaction coefficient T as

T1,2,3,4 = Z
(2)
1,2,3,4 + W

(2)
1,2,3,4 + �1+2−3−4B

(2)
1,2,3,4. (A 7)

Finally, the determination of the term B (2) requires special attention because surface
gravity waves enjoy resonant interaction for the combination �1+2−3−4 = ω1 + ω2 −
ω3 − ω4 = 0. It is then not possible to simply eliminate the δ1+2−3−4 term. Instead, B (2)

is determined from the requirement that also in terms of the free-wave action density
we have a Hamiltonian system. Hence, we require that T1,2,3,4 = T4,3,2,1 is symmetrical.
Although W (2) is symmetric, Z(2) and B (2) are not symmetric. Therefore, T and W (2)

may be eliminated from (A 7) by subtracting the (4,3,2,1) version of (A 7). Observing
that �4+3−2−1 = −�1+2−3−4 one finds

�1+2−3−4

(
B

(2)
1,2,3,4 + B

(2)
4,3,2,1

)
= Z

(2)
4,3,2,1 − Z

(2)
1,2,3,4; (A 8)

so the asymmetry in Z(2) drives B (2). This still looks like a singular equation for B (2),
but the remarkable thing is that for wavenumber quartets satisfying the resonance
condition k1 + k2 = k3 + k4 the right-hand side of (A 8) (RA8 ) is proportional to
�1+2−3−4. In order to see this we evaluate RA8 by using (A 3) with the result

RA8 = −2V
(−)
1,3,1−3V

(−)
4,2,4−2

[
1

ω3 + ω1−3 − ω1

− 1

ω2 + ω4−2 − ω4

]

− 2V
(−)
2,4,2−4V

(−)
3,1,3−1

[
1

ω1 + ω3−1 − ω3

− 1

ω4 + ω2−4 − ω2

]

− 2V
(−)
1+2,1,2V

(−)
3+4,3,4

[
1

ω1+2 − ω1 − ω2

− 1

ω3+4 − ω3 − ω4

]

− 2V
(+)

−1−2,1,2V
(+)

−3−4,3,4

[
1

ω1+2 + ω1 + ω2

− 1

ω3+4 + ω3 + ω4

]
.

Now the terms involving the angular frequencies are all proportional to �1+2−3−4. For
example, the first term becomes

1

ω3 + ω1−3 − ω1

− 1

ω2 + ω4−2 − ω4

=
�1+2−3−4 + ω4−2 − ω1−3

(ω3 + ω1−3 − ω1)(ω2 + ω4−2 − ω4)
,

and for the resonance condition k1 + k2 = k3 + k4 the term ω4−2 − ω1−3 vanishes. As
a consequence the singular terms �1+2−3−4 can be removed from (A 8), leaving the
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regular equation

B
(2)
1,2,3,4 + B

(2)
4,3,2,1 = X1,2,3,4 + Y1,2,3,4, (A 9)

with

X1,2,3,4 = −2A
(1)
1+2,1,2A

(1)
3+4,3,4 + 2A

(3)
−1−2,1,2A

(3)
−3−4,3,4

and

Y1,2,3,4 = 2A
(1)
2,4,2−4A

(1)
3,1,3−1 − 2A

(1)
1,3,1−3A

(1)
4,2,4−2.

I have grouped the terms in X and Y because of the different symmetry properties.
The term X enjoys the ‘natural’ symmetries and the Hamiltonian property, i.e.

X1,2,3,4 = X4,3,2,1, X1,2,3,4 = X1,2,4,3,

while Y has the Hamiltonian property but not the ‘natural’ symmetry property as

Y1,2,3,4 = Y4,3,2,1, Y1,2,4,3 = −Y2,1,3,4,

but the relation Y1,2,3,4 = Y1,2,4,3 does not hold. A solution of (A 9) is now constructed

respecting the ‘natural’ symmetry B
(2)
1,2,3,4 = B

(2)
1,2,4,3. Therefore, I have tried a solution

of the type

B
(2)
1,2,3,4 = α[Y1,2,3,4 + Y1,2,4,3] + βX1,2,4,3, (A 10)

and substitution of this in (A 9) gives α =1/2 and β = 1/2. Evidently, because
(A 9) is only an equation for the symmetric part of B

(2)
1,2,3,4, one can always add

to the solution an arbitrary asymmetric function λ1,2,3,4 with the property that
λ1,2,3,4 = λ1,2,4,3 = −λ4,3,2,1. Although this indeterminacy will affect the solution for
a(k) it does not affect A(k), and therefore one might as well choose λ1,2,3,4 = 0.

Using (A 10) and the expressions for X and Y

B
(2)
1,2,3,4 = 1/2[Y1,2,3,4 + Y1,2,4,3] + 1/2X1,2,4,3

= A
(1)
2,4,2−4A

(1)
3,1,3−1 − A

(1)
4,2,4−2A

(1)
1,3,1−3

+ A
(1)
2,3,2−3A

(1)
4,1,4−1 − A

(1)
3,2,3−2A

(1)
1,4,1−4

− A
(1)
1+2,1,2A

(1)
3+4,3,4 + A

(3)
−1−2,1,2A

(3)
−3−4,3,4, (A 11)

while using (A 11) in the expression for T1,2,3,4 from (A 7) one finds

T1,2,3,4 = W
(2)
1,2,3,4

− V
(−)
1,3,1−3V

(−)
4,2,4−2

[
1

ω3 + ω1−3 − ω1

+
1

ω2 + ω4−2 − ω4

]

− V
(−)
2,3,2−3V

(−)
4,1,4−1

[
1

ω3 + ω2−3 − ω2

+
1

ω1 + ω4−1 − ω4

]

− V
(−)
1,4,1−4V

(−)
3,2,3−2

[
1

ω4 + ω1−4 − ω1

+
1

ω2 + ω3−2 − ω3

]

− V
(−)
2,4,2−4V

(−)
3,1,3−1

[
1

ω4 + ω2−4 − ω2

+
1

ω1 + ω3−1 − ω3

]

− V
(−)
1+2,1,2V

(−)
3+4,3,4

[
1

ω1+2 − ω1 − ω2

+
1

ω3+4 − ω3 − ω4

]

− V
(+)

−1−2,1,2V
(+)

−3−4,3,4

[
1

ω1+2 + ω1 + ω2

+
1

ω3+4 + ω3 + ω4

]
,
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and the energy density in terms of the ‘free-wave’ action variable a becomes

E =

∫
dk1ω1a

∗
1a1 +

1

2

∫
dk1,2,3,4T1,2,3,4a

∗
1a

∗
2a3a4δ1+2−3−4.

In summary, I have found exactly the same results as Krasitskii (1994). It should
be emphasized that I have not made explicit use of the specific form of the coupling
coefficients V

(±)
1,2,3 and W

(i)
1,2,3,4 (i = 1, 4). I have only utilized their symmetry properties,

and therefore, the present result is fairly general. The success of this approach depends
entirely on the observation that it is possible to obtain a non-singular answer for
the B

(2)
1,2,3,4 coefficient of the canonical transformation. In other words, there must be

some deep reason why the right-hand side of (A 8) is proportional to �1+2−3−4, giving

a regular equation for B
(2)
1,2,3,4, but I haven’t been able to figure out the reason why.

Finally, an important remark regarding the canonical transformation for resonant
interactions. Consider once more (A 9) which determines B

(2)
1,2,3,4. It is emphasized that

strictly speaking we only have a condition on B
(2)
1,2,3,4 for non-resonant waves, namely

when �1+2−3−4 �= 0. Therefore, for resonant waves the canonical transformation is
arbitrary. For a continuous spectrum one may apply, however, a continuity argument
to determine the canonical transformation. Clearly, (A 9) determines B

(2)
1,2,3,4 away

from the resonance surface, but nevertheless, the relation holds arbitrarily close to
the resonance. Insisting on continuity of the transformation therefore gives B

(2)
1,2,3,4 at

the resonance surface. This has implications for the finite-amplitude expansion for a
‘single’ wave. Taking the narrowband limit of a continuous spectrum will therefore
give a different answer than when one starts from a discrete wave from the outset.

A.2. Nonlinear transfer coefficients

Defining q = ω2/g the second-order coefficients become

V
(±)
1,2,3 =

1

4
√

2

{
[k1 · k2 ± q1q2]

(
gω3

ω1ω2

)1/2

+ [k1 · k3 ± q1q3]

(
gω2

ω1ω3

)1/2

+ [k2 · k3 + q2q3]

(
gω1

ω2ω3

)1/2
}

with ki = |ki |, ωi = ω(ki). The third-order coefficients become

W
(1)
1,2,3,4 =

1

3
[U2,3,−1,4 + U2,4,−1,3 + U3,4,−1,2 − U−1,2,3,4 − U−1,3,2,4 − U−1,4,2,3],

W
(2)
1,2,3,4 = U−1,−2,3,4 + U3,4,−1,−2 − U3,−2,−1,4 − U−1,3,−2,4 − U−1,4,3,−2 − U4,−2,3,−1

W
(4)
1,2,3,4 =

1

3
[U1,2,3,4 + U1,3,2,4 + U1,4,2,3 + U2,3,1,4 + U2,4,1,3 + U3,4,1,2]

with

U1,2,3,4 =
1

16

(
ω3ω4

ω1ω2

)1/2 [
2
(
k2

1q2 + k2
2q1

)
− q1q2(q1+3 + q2+3 + q1+4 + q2+4)

]
.

A.3. Results for a single wavetrain

Here, we study the case of a single wave, and we will derive expressions for the wave
spectrum, the skewness and the kurtosis for both deep- and shallow-water waves. We
also discuss the relation between the canonical transformation and the well-known
Stokes expansion.
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Let us apply the present formalism to the special case of a single wave. We therefore
write

a1 = aδ(k1 − k0), (A 12)

and the Zakharov equation (A 6) becomes

∂

∂t
a + iω0a = −iT0,0,0,0|a|2a, (A 13)

where for arbitrary depth T0,0,0,0 was derived by Janssen & Onorato (2007). It reads

T0,0,0,0/k3
0 =

9T 4
0 − 10T 2

0 + 9

8T 3
0

− 1

k0D

{
(2vg − c0/2)2

c2
S − v2

g

+ 1

}
,

where c0 = ω0/k0 is the phase speed, vg = ∂ω/∂k is the group velocity, and c2
S = gD.

The differential equation (A 13) may be solved with the ansatz a = a0 exp (−iΩ0t),
and as a result one finds that a0 is a constant, while the angular frequency Ω0 reads

Ω0 = ω0 + T0,0,0,0|a0|2,

and the nonlinear term corresponds to the Stokes-frequency correction. The next step
is to evaluate the canonical transformation A= A(a, a∗). Substitution of (A 12) into
(18) gives

A1 = A
(2)
1,0,0|a|2δ(k1) + aδ(k1 − k0) + A

(1)
1,0,0a

2δ(k1 − 2k0) + A
(3)
1,0,0a

∗2δ(k1 + 2k0)

+ B
(2)
1,0,0,0|a|2aδ(k1 − k0) + B

(3)
1,0,0,0|a|2a∗δ(k1 + k0) (A 14)

+ B
(1)
1,0,0,0a

3δ(k1 − 3k0) + B
(4)
1,0,0,0a

∗3δ(k1 + 3k0).

Equation (A 14) shows that apart from a mode at wavenumber k0, A1 has contributions
at k = ±2k0 and at k = ±3k0 and a nonlinear correction to the linear mode at k = ±k0.
In second order one also finds in general a wave-induced mean-elevation contribution
(cf. Janssen & Onorato 2007) which for deep water can be shown to vanish. The
surface elevation η then follows from substitution of (A 14) into

η =

∫
dk

√
ω

2g
A(k) eikx + c.c.,

and the result is, upon introduction of the surface-elevation amplitude a according to
a0 → (g/2ω0)

1/2a,

η = �a2 + a(1 + γ a2) cos θ + αa2 cos 2θ + βa3 cos 3θ + . . . , (A 15)

where α, β, γ and � are known functions of wavenumber and depth, and they
follow from an extension of the second-order result of Janssen & Onorato (2007).
Thus, the coefficients read

� = limε→0
g

2ω0
fε

(
A

(2)
ε,0,0 + A

(2)
−ε,0,0

)
, γ = g

2ω0

[
B

(2)
0,0,0,0 + B

(3)
−0,0,0,0

]
,

α =
(

gω2

2ω2
0

)1/2 [
A

(1)
2,0,0 + A

(3)
−2,0,0

]
, β =

(
ω3

ω0

)1/2
g

2ω0

[
B

(1)
3,0,0,0 + B

(4)
−3,0,0,0

]
,

⎫⎪⎬
⎪⎭

where A(i)(i = 1, 3) and B (j )(j = 1, 4) are the interaction coefficients that naturally
occur in the present Hamiltonian approach, and they are explicitly given in the §§ A1
and A 2. Here we introduced a slight abuse of notation, as the index ‘2’ now refers
to wavenumber 2k0, etc. It is a straightforward (but laborious) task to evaluate the
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coupling coefficients. In deep water they become

B
(1)
3,0,0,0 =

33/4

8
(1 +

√
3)

k3
0

ω0

, B
(2)
0,0,0,0 = −1

2

k3
0

ω0

, B
(3)
−0,0,0,0 =

1

4

k3
0

ω0

and

B
(4)
−3,0,0,0 =

33/4

8
(1 −

√
3)

k3
0

ω0

,

while

A
(1)
2,0,0 =

1

4

(
2g

ω2

)1/2

(1 +
√

2)
k2

0

ω0

, A
(3)
−2,0,0 =

1

4

(
2g

ω2

)1/2

(1 −
√

2)
k2

0

ω0

.

Using the expression for the coupling coefficients the following canonical
transformation for a single wave is found:

η/a =

(
1 − ε2

8

)
cos θ +

1

2
ε cos 2θ +

3

8
ε2 cos 3θ, (A 16)

where ε = k0a is the wave slope; θ = k0x − Ω0t + φ, φ is the arbitrary phase of the
wave; and Ω0 = ω0(1 + ε2/2) is the nonlinear dispersion relation.

The present weakly nonlinear expansion of the surface elevation in terms of the
steepness ε is an example of a Stokes expansion. However, it should be noted that the
Stokes expansion is not unique. This can be checked by obtaining the expansion of
the surface elevation from the original Hamilton equations (17), and it can be shown
that there is a whole family of solutions, parameterized by the initial condition of the
first-harmonic amplitude at third order in wave steepness. Solution (A 16) belongs to
this family, and clearly this is the one that is relevant in establishing a connection
between the single-mode results and the narrowband limit of the result for general
wave spectra. Also note that the family of Stokes solutions can be generated from
the canonical transformation by using a slightly more general starting point, namely
(A 12) with a = a(0) + ε2a(2) with a(2) arbitrary.

For arbitrary depth the canonical transformation for a narrowband wavetrain can
be evaluated as well. After some tedious but straightforward algebra all the coupling
coefficients can be eliminated in favour of wavenumber k0 and T0 = tanh x. Hence,

� = −k0

4

c2
S

c2
S − v2

g

[
2
(
1 − T 2

0

)
T0

+
1

x

]
, α =

k0

4T 3
0

(
3 − T 2

0

)
,

β =
3k2

0

64T 6
0

[
8 +
(
1 − T 2

0

)3]
, γ = −1

2
α2, (A 17)

where x = k0D; T0 = tanh x; c2
S = gD; vg = ∂ω/∂k; ω = (gk0T0)

1/2. These results
were checked against calculations of the coupling coefficients on the computer.
Furthermore, the deep-water limit is in agreement with the known results given
in (A 16).

In order to derive expressions for the wave spectrum, the wave variance, the
skewness and the kurtosis of a random, narrowband wavetrain we have to make
the assumption that the sea state is Gaussian and homogeneous. For a narrowband
wavetrain, normality of the p.d.f. of the linear wave implies that the phase is uniformly
distributed, while the amplitude a obeys the Rayleigh distribution. Here, a will be
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scaled with σ =
√

m0 so that the p.d.f. of a becomes simply

p(a) = a e− 1
2 a2

,

while the phase is uniformly distributed; hence

p(a, θ) = 1
2π

a e− 1
2 a2

.

Because of the presence of the wave-induced mean level, the average of η is not zero.
In agreement with experimental practice, we subtract the mean level 〈η〉. In addition,
in (A 15) we scale amplitude a with σ , and we treat σ as a small parameter. Hence
the surface elevation becomes

η = �σ 2(a2 − 〈a2〉)+σa(1+γ σ 2a2) cos θ +ασ 2a2 cos 2θ +βσ 3a3 cos 3θ + · · · , (A 18)

and now 〈η〉 vanishes. Nevertheless, nonlinear quantities such as the second moment
〈η2〉 will depend on the parameter � (which measures the strength of the wave-induced
mean sea level), as for m > 1, 〈(a2 − 〈a2〉)m〉 does not vanish. Let us first evaluate
the wave spectrum for a homogeneous sea, which is essentially a quadratic quantity.
To that end we evaluate the spatial correlation function 〈η(x + r)η(x)〉 assuming
homogeneity. The spectrum F (k) then follows by taking the Fourier transform with
respect to distance r . Now, since 〈a2〉 =2, 〈a4〉 =8 and 〈a6〉 = 48, the spectrum becomes
up to fourth order in σ

F (k) = 1
2
σ 2(1 + 8σ 2γ )δ(k − k0) + 2σ 4[�2δ(k) + α2δ(k − 2k0)] + k → −k, (A 19)

and it can be verified that in the deep-water limit this result agrees with the
narrowband limit of the spectral approach (cf. (36)). In the general case we see that
the canonical transformation will give rise to a second-harmonic peak, a correction to
the energy of the first harmonic and also a contribution to zero mean wavenumber.
It is left as an exercise for the reader that for finite depth the general result (A 19)
also agrees with the narrowband result obtained from (36). Just like in the main text,
the determination of the frequency spectrum requires special attention. In particular
the Stokes-frequency correction will affect the spectral shape, and for a discussion on
this see Janssen & Komen (1982).

The skewness C3 and the kurtosis C4 are defined as

C3 = 〈η3〉/〈η2〉3/2, C4 = 〈η4〉/3〈η〉2 − 1; (A 20)

hence we need to evaluate the third and fourth moments of the p.d.f.,

〈η3〉 =

∫
η3 p(a, θ)da dθ, 〈η4〉 =

∫
η4 p(a, θ)da dθ,

up to the required order in σ 2, while we also need the second moment. The last
follows immediately from an integration of the wavenumber spectrum, and as a result
one finds

〈η2〉 = σ 2 + 4σ 4(2γ + α2 + �2). (A 21)

In order to determine the skewness parameter we need to evaluate the third moment
up the order σ 4. Using the expression for the surface elevation (A 18) one finds

η3 = σ 3
{
a3 cos3 θ + 3σa2

[
αa2 cos 2θ cos2 θ + �(a2 − 〈a2〉) cos2 θ

]}
+ O(σ 5).

We perform the averaging over the angle θ first. With 〈cos3 θ〉 = 0, 〈cos2 θ〉 = 1/2 and
〈cos 2θ cos2 θ〉 = 1/4 one finds

〈η3〉 = 3σ 4
[

1
4
α〈a4〉 + 1

2
�
(
〈a4〉 − 〈a2〉2

)]
.
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Figure 8. (a) The skewness C3 and (b) the kurtosis C4 related to the canonical transformation
for a steepness ε =0.1 as functions of the dimensionless depth x = k0D. The black line denotes
results including the wave-induced set-down, and the dashed black line denotes results without
the wave-induced set-down.

Now, since 〈a2〉 = 2 and 〈a4〉 = 8 the third moment becomes

〈η3〉 = 6σ 4 (α + �) ,

and to the lowest significant order the skewness becomes

C3 = 6σ (α + �) . (A 22)

In a similar vein the kurtosis parameter can be obtained. In order to get non-trivial
results an evaluation of the fourth moment up to σ 6 is required. Now,

η4 = σ 4a4(1 + 4γ σ 2a2) cos4 θ + 4σ 5a3 cos3 θ[�(a2 − 〈a2〉) + αa2 cos 2θ + σβa3 cos 3θ]

+ 6σ 6a2 cos2 θ[�2(a2 − 〈a2〉)2 + 2α�a2(a2 − 〈a2〉) cos 2θ + α2a4 cos2 2θ] + O(σ 7).

Perform the averaging over θ first. To that end we need to know some additional
integrals:

〈cos4 θ〉 = 3
8
, 〈cos3 θ〉 = 0, 〈cos3 θ cos 2θ〉 = 0, 〈cos3 θ cos 3θ〉 = 1

8
, 〈cos2 θ cos2 2θ〉 = 1

4
.

This gives

〈η4〉 =
3

8
σ 4〈a4〉 + σ 6

[
〈a6〉

{
3

2

(
β

3
+ γ + α2

)
+ 3(�2 + α�)

}

− 〈a4〉〈a2〉(6�2 + 3α�) + 3�2〈a2〉3

]
.

Now, since 〈a2〉 = 2, 〈a4〉 = 8 and 〈a6〉 =48, one finds

〈η4〉 = 3σ 4 + 24σ 6[β + 3(γ + α2) + 3�2 + 4α�].

Finally, by means of the expression for the variance (A 21) the kurtosis becomes to
the lowest significant order

C4 = 8σ 2[β + γ + 2(α + �)2]. (A 23)

Hence, referring to (A 17) we have now explicit expressions for the skewness and the
kurtosis of a narrowband wavetrain in terms of the wave variance, wavenumber and
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depth. In particular, for deep water one finds (see e.g. Mori & Janssen 2006)

C3 = 3ε, C4 = 6ε2, (A 24)

where ε = k0σ is the ‘significant’ steepness.
Finally, it is of interest to study the importance of the wave-induced mean level

to the statistical properties of the sea surface. As for a wave group one typically has
a set-down, and as for the range of the dimensionless depth x 
 1 |�| <α it is seen
from (A 22) and (A 23) that a set-down will give rise to a reduction of the skewness
and the kurtosis. This is illustrated in figure 8 for both the skewness and the kurtosis
plotted as functions of the dimensionless depth k0D. First of all we see that there
is a dramatic increase of these higher-order statistics when moving into shallower
water, but this increase is significantly slowed down when effects of the wave-induced
set-down are included.
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